As "|z|=\\sqrt{x^2+y^2}" where "z=x+iy,\\bar{z}=x-iy," then "z\\sdot\\bar{z}=x^2+y^2=|z|^2" and
"z+\\bar{z}=2x=2Re(z)" where "x=Re(z)" , then "Re(z)\\le |z|"
i. "|z_1+z_2|=(z_1+z_2)(\\bar{z_1}+\\bar{z_2})=z_1\\bar{z_1}+z_1\\bar{z_2}+z_2\\bar{z_1}+z_2\\bar{z_2}="
"=|z_1|^2+|z_2|^2+2Re(z_1z_2)"
ii. Since the sum of two complex numbers can be represented as the third side of a triangle then
"|z_1+z_2|\\le|z_1|+|z_2|"
b) Using the triangle rule
i. If "|z_1+z_2|=|z_1|+|z_2|" then "z_2=k(1+2i)" where "k>0, k\\in R"
ii. If "|z_1+z_2|=|z_1|+|z_2|" then "z_2=-k(1+2i)" where "k>0,k\\in R"
Comments
Leave a comment