Let "f" and "\\phi(s)" be given as in the theorem, and fix "s" with finite abscissa of convergence "\\sigma>min(0,\\sigma_c)" , so the Dirichlet series
"\\phi(s)=\\displaystyle\\sum_{n=1}^\\infty f(n)n^{-s}"
converges at "s". Write
"f(x)=\\displaystyle\\sum_{n=1}^\\infty f(n)\\chi(x,n)"
where
"\\chi(x,n)={1, if n\\geqslant x\\brace 0, if n<x}"
Then, for every "X\\geqslant 1"
"s\\intop_1^X \\frac{f(x)}{x^{s+1}}dx=s\\intop_1^X\\displaystyle\\sum_{n=1}^\\infty\\chi(x,n)\\frac{f(n)}{x^{s+1}}dx=" "s\\intop_1^X\\displaystyle\\sum_{n\\leqslant X}\\chi(x,n)\\frac{f(n)}{x^{s+1}}dx="
"=s\\displaystyle\\sum_{n\\leqslant 1}f(n)\\intop_1^X\\chi(x,n)\\frac{1}{x^{s+1}}dx=" "s\\displaystyle\\sum_{n\\leqslant 1}f(n)\\intop_1^n\\frac{1}{x^{s+1}}dx=" "=\\displaystyle\\sum_{n\\leqslant 1}f(n)\\frac{1}{s}(\\frac{1}{n^s}-\\frac{1}{X^s})=" "\\displaystyle\\sum_{n\\leqslant 1}\\frac{f(n)}{n^s}-\\frac{f(x)}{X^s}"
Now let "X->\\infty" . Then, by the convergence of "\\phi(s)", the first term on the right tends to "\\phi(s)". Moreover, Kronecker’s Lemma implies that the second term tends to 0. Hence we conclude
"lim_{X->\\infty}s\\intop_1^X \\frac{f(x)}{x^{s+1}}=\\phi(s)".
which proves our formula. "\\blacksquare"
Comments
Leave a comment