solve (x^3+3xy^2)p+(y^3+3x^2y)q=(x+y)^2z
Given equation is-
"(x^3+3xy^2)p+(y^3+3x^2y)q=(x+y)^2z"
"\\dfrac{dx}{x^3+3xy^2}=\\dfrac{dy}{y^3+3x^2y}=\\dfrac{dz}{z(x+y)^2}"
"\\dfrac{dy}{dx}=\\dfrac{y^3+3x^2y}{x^3+3xy^2}"
This is a homogeneous differential equation.
Let "\\dfrac{y}{x}=v, y=xv, \\dfrac{dy}{dx}=v+x(\\dfrac{dv}{dx})"
Then:
"v+x\\dfrac{dv}{dx}=\\dfrac{(xv)^3+3x^3v}{x^3+3x^3v^2}=\\dfrac{v^3+3v}{1+3v^2}"
"x\\dfrac{dv}{dx}=\\dfrac{v^3+3v}{1+3v^2}-v=\\dfrac{4v^3+2v}{1+3v^2}"
"\\dfrac{1}{2}\\intop\\dfrac{1+3v^2}{v(2v^2+1)}dv=\\intop \\dfrac{dx}{x}"
"\\dfrac{1+3v^2}{v(2v^2+1)}=\\dfrac{A}{v}+\\dfrac{Bv+C}{2v^2+1}"
"A(2v^2+1)+v(Bv+C)=1+3v^2"
"2A+B=3"
"A=1"
"C=0"
"B=3-2A=1"
"\\dfrac{1-3v^2}{v(2v^2+1)}=\\dfrac{1}{v}+\\dfrac{v}{2v^2+1}"
"\\intop\\dfrac{v}{2v^2+1}dv=\\dfrac{1}{2}\\intop\\dfrac{d(v^2)}{2v^2+1}dv=\\dfrac{ln(2v^2+1)}{4}"
"\\dfrac{lnv}{2}-\\dfrac{5ln(2v^2+1)}{8}=lnx+lnc_1"
"ln(\\dfrac{v^{1\/2}}{(2v^2+1)^{5\/8}})=ln(c_1x)"
"\\dfrac{(y\/x)^{1\/2}}{x(2(y\/x)^2+1)^{5\/8}}=c_1"
"\\dfrac{dx\/x+dy\/y+dz\/z}{6x^2}=-\\dfrac{3(dx\/x-dy\/y+dz\/z)}{6y^2}=\\dfrac{dz}{z(x+y)^2}"
"\\dfrac{dx\/x+dy\/y+dz\/z-3(dx\/x-dy\/y+dz\/z)}{6x^2+6y^2}=\\dfrac{3dz\/z}{6(x+y)^2}"
"\\dfrac{dx}{x}+\\dfrac{dy}{y}+\\dfrac{dz}{z}-3(\\dfrac{dx}{x}-\\dfrac{dy}{y}+\\dfrac{dz}{z})=3\\dfrac{dz}{z}"
"4\\dfrac{dy}{y}-2\\dfrac{dx}{x}=5\\dfrac{dz}{z}"
"4lny-2lnx=5lnz+lnc_2"
"ln(\\dfrac{y^4}{x^2})=ln(c_2z^5)"
"\\dfrac{y^4}{x^2z^5}=c_2"
The general integral:
"\\phi(\\dfrac{(y\/x)^{1\/2}}{x(2(y\/x)^2+1)^{5\/8}}, \\dfrac{y^4}{x^2z^5})=0"
Comments
Leave a comment