Solve the equation (a) z 4 = 24i − 7, (b) z 2 + z −2 = i, (c) z 6 = (1 + z) 6
Solution:
(a):
"z^4=24i-7"
Put "z=x+iy"
"\\Rightarrow (x+iy)^4=24i-7\n\\\\ \\Rightarrow [(x+iy)^2]^2=24i-7\n\\\\ \\Rightarrow [x^2+i^2y^2+2ixy]^2=24i-7\n\\\\ \\Rightarrow [(x^2-y^2)+2ixy]^2=24i-7\n\\\\ \\Rightarrow [(x^2-y^2)^2+(2ixy)^2+2(x^2-y^2)(2ixy)]=24i-7\n\\\\ \\Rightarrow (x^4+y^4-2x^2y^2)-4x^2y^2+4ix^3y-4ixy^3=24i-7\n\\\\ \\Rightarrow x^4+y^4-6x^2y^2+i(4x^3y-4xy^3)=24i-7"
On comparing both sides,
"x^4+y^4-6x^2y^2=-7,\\ 4x^3y-4xy^3=24\n\\\\\\Rightarrow (x^2-y^2)^2-(2xy)^2=-7,\\ 4xy(x^2-y^2)=24\n\\\\\\Rightarrow (x^2-y^2)^2-(2xy)^2=-7\\ ...(i),\\ (x^2-y^2)=\\dfrac{6}{xy}\\ ...(ii)"
Put (ii) in (i),
"\\\\\\Rightarrow (\\dfrac6{xy})^2-(2xy)^2=-7\n\\\\\\Rightarrow \\dfrac{36}{x^2y^2}-4x^2y^2=-7"
Put "x^2y^2=t"
"\\\\\\Rightarrow \\dfrac{36}{t}-4t=-7"
"\\Rightarrow t=-\\dfrac{9}{4},\\:t=4\n\\\\ \\Rightarrow x^2y^2=-\\dfrac{9}{4},\\:x^2y^2=4"
Rejecting negative value as it is impossible for real numbers.
"\\Rightarrow xy=\\pm2\n\\\\ \\Rightarrow x=\\dfrac{\\pm2}{y} \\ ...(iii)"
Put (iii) in (ii)
"(\\dfrac{4}{y^2}-y^2)=\\dfrac{6}{\\pm2}=\\pm3\n\\\\\\Rightarrow \\dfrac{4}{y^2}-y^2=3; \\dfrac{4}{y^2}-y^2=-3\n\\\\ \\Rightarrow y=-4,1;y=-1,4\n\\\\ \\Rightarrow y=\\pm4,\\pm1"
Put this in (iii),
"x=\\pm\\dfrac{1}{2},\\pm2"
Thus, solution is "z=\\pm\\dfrac12\\pm4i;z=\\pm2\\pm1i"
(b):
"z^ 2 + z \u22122 = i"
Put "z=x+iy"
"\\Rightarrow (x+iy)^ 2 + (x+iy) \u22122 = i\n\\\\ \\Rightarrow x^2-y^2+2ixy+x+iy-2=i\n\\\\ \\Rightarrow (x^2-y^2+x-2)+i(2xy)=0+i"
On comparing,
"x^2-y^2+x-2=0;\\ 2xy=1\n\\\\\\Rightarrow x^2-y^2+x-2=0\\ ...(i);\\ y=\\dfrac{1}{2x} \\ ...(ii)"
Put (ii) in (i),
"\\\\ \\Rightarrow x^2-(\\dfrac{1}{2x})^2+x-2=0\n\\\\ \\Rightarrow 4x^4-1+4x^3-8x^2=0\n\\\\ \\Rightarrow 4x^4+4x^3-8x^2-1=0\n\\\\ \\Rightarrow x\\approx \\:1.07 ,\\:x\\approx \\:-2.02"
Put these in (ii)
"y=0.47,y=-0.25"
Thus, solutions are "z=1.07+0.47i;\\ z=-2.02-0.25i"
(c):
"z ^6 = (1 + z)^ 6 \n\\\\\\Rightarrow (\\dfrac{z}{1+z})^6=1 \n\\\\\\Rightarrow \\dfrac{z}{1+z}=1\n\\\\\\Rightarrow \\dfrac{z}{1+z}=e^{ik\\pi\/3}" , where "k=1,2,..,6"
"\\\\\\Rightarrow z=\\dfrac{e^{ik\\pi\/3}}{1-e^{ik\\pi\/3}}"
Simplify this using trigonometric form and double angle identites to get:
"z=-\\dfrac12+i\\cot(\\dfrac{k\\pi}{6})"
Putting "k=1,2,...,6"
"z=-\\dfrac12+i\\cot(\\dfrac{\\pi}{6});-\\dfrac12+i\\cot(\\dfrac{\\pi}{3});-\\dfrac12+i\\cot(\\dfrac{\\pi}{2})\n\\\\;-\\dfrac12+i\\cot(\\dfrac{2\\pi}{3});-\\dfrac12+i\\cot(\\dfrac{5\\pi}{6});-\\dfrac12+i\\cot(\\pi)"
"z=-\\dfrac12+i\\sqrt3;-\\dfrac12+i(\\dfrac{1}{\\sqrt3});-\\dfrac12+i(0)\n\\\\;-\\dfrac12+i(-\\dfrac{1}{\\sqrt3});-\\dfrac12+i(-\\sqrt3);-\\dfrac12+i(\\infty)"
Thus, solutions are:
"z=-\\dfrac12+i\\sqrt3;-\\dfrac12+i(\\dfrac{1}{\\sqrt3});-\\dfrac12\n\\\\;-\\dfrac12-i(\\dfrac{1}{\\sqrt3});-\\dfrac12-i(\\sqrt3);\\text{not defined}"
Comments
Leave a comment