Expand f(z)=π§+3/π§(π§2βπ§β2) in power of z where
a) |π§|<1
b) 1<|π§|<2
c) |π§|>2
"f=z+\\frac{3}{z(z^2-z-2)}=z+\\frac{3}{z(z+1)(z-2)}=z+\\frac{1}{z}\\left(\\frac{1}{z-2}-\\frac{1}{z+1}\\right)=z+\\frac{1}{z(z-2)}-\\frac{1}{z(z+1)}=z+\\frac{1}{2(z-2)}-\\frac{1}{2z}-\\frac{1}{z}+\\frac{1}{z+1}=z-\\frac{3}{2}z^{-1}+\\frac{1}{4(\\frac{z}{2}-1)}+\\frac{1}{z+1}"
We remind the formula: "a+ar+...+ar^n=a\\left(\\frac{1-r^{n+1}}{1-r}\\right)", "|r|<1." We take the limit and get: "a+ar+...+ar^n+...=\\frac{a}{1-r}".
a). For "|z|<1" we use the formula and get:
"z-\\frac{3}{2}z^{-1}+\\frac{1}{4(\\frac{z}{2}-1)}+\\frac{1}{z+1}=z-\\frac{3}{2}z^{-1}-\\frac14\\left(1+\\frac{z}{2}+\\frac{z^2}{2^2}+\\frac{z^3}{2^3}...\\right)+\\left(1-z+z^2-z^3+z^4+...\\right)"
b). We point out that "\\frac{1}{2}<\\frac{1}{|z|}<1". We rewrite the equality as: "z-\\frac{3}{2}z^{-1}-\\frac{1}{4(1-\\frac{z}2)}+\\frac{1}{z(1+\\frac{1}{z})}=z-\\frac{3}{2}z^{-1}-\\frac{1}{4}\\left(1-\\frac{z}{2}+\\frac{z^2}4-...\\right)+\\frac{1}{z}\\left(1-\\frac{1}{z}+\\frac{1}{z^2}+...\\right)"
c). We have: "\\frac{1}{2}>\\frac{1}{|z|}". Thus, we get: "z-\\frac{3}{2}z^{-1}+\\frac{1}{2(1-\\frac{2}{z})}+\\frac{1}{z(1+\\frac{1}{z})}=z-\\frac{3}{2}z^{-1}+\\frac12\\left(1-\\frac{2}{z}+\\frac{4}{z^2}+...\\right)+\\frac{1}{z}\\left(1-\\frac{1}{z}+\\frac{1}{z^2}+...\\right)"
Comments
Leave a comment