Find the value of β«c 1/πππ§, where C is circle π§=π^πβ , 0β€β β€π
"I=\\int _C \\dfrac{1}{z}dz\\ \\ \\ where, z=e^{i\\theta},\\ \\ 0\\leq\\theta \\leq \\pi"
We know that
"\\int_C f(z)dz=\\int _a^b f(w(\\theta))\\cdot w'(\\theta)d\\theta\\ \\ \\ \\ \\ , a\\leq \\theta \\leq b"
"f(z)=\\dfrac{1}{z}" , "w(\\theta )= e^{i\\theta},\\ \\ w'(\\theta)=e^{i\\theta}\\cdot i=ie^{i\\theta}"
"I=\\int _C \\dfrac{1}{z}dz=\\int_0^{\\pi}f(e^{i\\theta})\\cdot ie^{i\\theta}d\\theta=\\int_0^\\pi \\dfrac{1}{e^{i\\theta}}\\cdot ie^{i\\theta}d\\theta\\\\\\ \\\\\\implies I=\\int_0^\\pi id\\theta=i\\theta]_0^{\\pi}=\\pi i"
Hence,
"I=\\int _C \\dfrac{1}{z}dz=\\pi i"
Comments
Leave a comment