Determine for which value (s) of λ the real part of z = 1+λi/1−λi equals zero
"z=\\dfrac{1+\\lambda {i}}{1-\\lambda{i}}\\\\\nz=\\dfrac{(1+\\lambda{i})(1+\\lambda{i})}{(1-\\lambda{i})(1+\\lambda{i})}\\\\\nz=\\dfrac{1+2\\lambda{i}-\\lambda^2}{1+\\lambda^2}\\\\\nz=\\dfrac{1-\\lambda^2}{1+\\lambda^2}+\\dfrac{2\\lambda{i}}{1+\\lambda^2}\\\\\n\\reals(z)=\\dfrac{1-\\lambda^2}{1+\\lambda^2}=0\\\\\n\\therefore\n1-\\lambda^2=0\\\\\n\\lambda^2=1\\\\\n\\lambda=\\pm \\sqrt{1}\\\\\n\\lambda=\\pm1"
Comments
Leave a comment