Find the roots of the equation:
(5.1) z4 + 4 = 0 and z4 − 4 = 0
(5.2) Additional Exercises for practice are given below.
Find the roots of
(a) z8 − 16 = 0
(b) z8 + 16 = 0.
Given equation is "z^4 + 4 = 0"
"z^4 = -4"
since, "e^{i\\pi} = -1" and let "z = re^{i\\theta}"
Then, "(re^{i\\theta})^4 = 4e^{i\\pi}"
"r^4 e^{i4\\theta}= 4e^{i\\pi}"
solving it, "r^4 = 4 \\implies r=\\sqrt{2}"
"4\\theta = \\pi + 2n\\pi \\implies \\theta = \\frac{\\pi}{4} + \\frac{2n\\pi}{4}" where n=0,1,2,3
So, roots of the equation will be,
"z = \\sqrt{2}e^{i(\\frac{\\pi}{4} )}, \\sqrt{2}e^{i(\\frac{\\pi}{4} + \\frac{\\pi}{2})},\\sqrt{2}e^{i(\\frac{\\pi}{4} + {\\pi})},\\sqrt{2}e^{i(\\frac{\\pi}{4} + \\frac{3\\pi}{2})}"
"z = \\sqrt{2} e^{i(\\frac{\\pi}{4} )},\\sqrt{2}e^{i(\\frac{3\\pi}{4} )},\\sqrt{2}e^{i(\\frac{5\\pi}{4})},\\sqrt{2}e^{i(\\frac{7\\pi}{4} )}"
Since, "e^{i\\theta} = cos\\theta + isin\\theta"
"z_1 =\\sqrt{2} e^{i(\\frac{\\pi}{4} )} = \\sqrt{2}(cos\\frac{\\pi}{4} + isin\\frac{\\pi}{4}) = \\sqrt{2}(\\frac{1}{\\sqrt{2} } +i\\frac{1}{\\sqrt{2}}) = 1+i"
"z_2 =\\sqrt{2} e^{i(\\frac{3\\pi}{4} )} = \\sqrt{2}(cos\\frac{3\\pi}{4} + isin\\frac{3\\pi}{4}) = \\sqrt{2}(-\\frac{1}{\\sqrt{2} } +i\\frac{1}{\\sqrt{2}}) = -1+i"
"z_3 =\\sqrt{2} e^{i(\\frac{5\\pi}{4} )} = \\sqrt{2}(cos\\frac{5\\pi}{4} + isin\\frac{5\\pi}{4}) = \\sqrt{2}(-\\frac{1}{\\sqrt{2} } -i\\frac{1}{\\sqrt{2}}) = -1-i"
"z_4 =\\sqrt{2} e^{i(\\frac{7\\pi}{4} )} = \\sqrt{2}(cos\\frac{7\\pi}{4} + isin\\frac{7\\pi}{4}) = \\sqrt{2}(\\frac{1}{\\sqrt{2} } -i\\frac{1}{\\sqrt{2}}) = 1-i"
For "z^4-4 = 0 \\implies (z^2-2)(z^2+2)=0"
"z^2-2=0 \\implies z = \\pm\\sqrt{2}"
"z^2+2=0 \\implies z^2 = - 2 \\implies z=\\pm\\sqrt{2}i"
Roots are, "z = \\sqrt{2},-\\sqrt{2},\\sqrt{2}i,-\\sqrt{2}i"
For "z^8 - 16 = 0 \\implies (z^4-4)(z^4+4) = 0"
roots for both are obtained above, so the roots will be,
"z = -\\sqrt{2},\\sqrt{2},-\\sqrt{2}i,\\sqrt{2}i,1+i,-1+i,-1-i,1-i"
For "z^8 + 16 = 0"
"z^8 = -16"
"(re^{i\\theta})^8 = (16e^{i\\pi})"
Solving it, "r = (16)^{1\/8} \\implies r=\\sqrt{2}"
"8\\theta = \\pi + 2n\\pi \\implies \\theta = \\frac{\\pi}{8} + \\frac{2n\\pi}{8 }" where =0,1,2,3,4,5,6,7
"z_1 = \\sqrt{2}e^{i\\frac{\\pi}{8}} = \\sqrt{2}(cos\\frac{\\pi}{8}+isin\\frac{\\pi}{8})"
"z_2 = \\sqrt{2}e^{i\\frac{3\\pi}{8}} = \\sqrt{2}(cos\\frac{3\\pi}{8}+isin\\frac{3\\pi}{8})"
"z_3 = \\sqrt{2}e^{i\\frac{5\\pi}{8}} = \\sqrt{2}(cos\\frac{5\\pi}{8}+isin\\frac{5\\pi}{8})"
"z_4= \\sqrt{2}e^{i\\frac{7\\pi}{8}} = \\sqrt{2}(cos\\frac{7\\pi}{8}+isin\\frac{7\\pi}{8})"
"z_5 = \\sqrt{2}e^{i\\frac{9\\pi}{8}} = \\sqrt{2}(cos\\frac{9\\pi}{8}+isin\\frac{9\\pi}{8})"
"z_6 = \\sqrt{2}e^{i\\frac{11\\pi}{8}} = \\sqrt{2}(cos\\frac{11\\pi}{8}+isin\\frac{11\\pi}{8})"
"z_7 = \\sqrt{2}e^{i\\frac{13\\pi}{8}} = \\sqrt{2}(cos\\frac{13\\pi}{8}+isin\\frac{13\\pi}{8})"
"z_8 = \\sqrt{2}e^{i\\frac{15\\pi}{8}} = \\sqrt{2}(cos\\frac{15\\pi}{8}+isin\\frac{15\\pi}{8})"
Comments
Leave a comment