Use de moivres theorem to
1.derive the 4th roots of w=-8i.
2.express cos(4@) and sin(5@) in terms of powers of cos@ and sin@.
3.expand cos^6@ in terms of multiple powers of z based on @.
4.express cos^3@sin^4@ in terms of multiple angles.
NOTE:@ represents theta.
1.
"k=0:"
"\\sqrt[4]{8}(\\cos(\\dfrac{-\\dfrac{\\pi}{2}+2\\pi(0)}{4})+i\\sin(\\dfrac{-\\dfrac{\\pi}{2}+2\\pi(0)}{4}))""=2^{3\/4}(\\cos(-\\dfrac{\\pi}{8})+i\\sin(-\\dfrac{\\pi}{8}))"
"=2^{-1\/4}\\sqrt{2+\\sqrt{2}}-i2^{-1\/4}\\sqrt{2-\\sqrt{2}}"
"k=1:"
"\\sqrt[4]{8}(\\cos(\\dfrac{-\\dfrac{\\pi}{2}+2\\pi(1)}{4})+i\\sin(\\dfrac{-\\dfrac{\\pi}{2}+2\\pi(1)}{4}))""=2^{3\/4}(\\cos(\\dfrac{3\\pi}{8})+i\\sin(\\dfrac{3\\pi}{8}))"
"=2^{-1\/4}\\sqrt{2-\\sqrt{2}}+i2^{-1\/4}\\sqrt{2+\\sqrt{2}}"
"k=2:"
"\\sqrt[4]{8}(\\cos(\\dfrac{-\\dfrac{\\pi}{2}+2\\pi(2)}{4})+i\\sin(\\dfrac{-\\dfrac{\\pi}{2}+2\\pi(2)}{4}))""=2^{3\/4}(\\cos(\\dfrac{7\\pi}{8})+i\\sin(\\dfrac{7\\pi}{8}))"
"=-2^{-1\/4}\\sqrt{2+\\sqrt{2}}+i2^{-1\/4}\\sqrt{2-\\sqrt{2}}"
"k=3:"
"\\sqrt[4]{8}(\\cos(\\dfrac{-\\dfrac{\\pi}{2}+2\\pi(3)}{4})+i\\sin(\\dfrac{-\\dfrac{\\pi}{2}+2\\pi(3)}{4}))""=2^{3\/4}(\\cos(\\dfrac{11\\pi}{8})+i\\sin(\\dfrac{11\\pi}{8}))"
"=-2^{-1\/4}\\sqrt{2-\\sqrt{2}}-i2^{-1\/4}\\sqrt{2+\\sqrt{2}}"
2.
"=\\cos^4\\alpha+4i\\cos^3\\alpha\\sin\\alpha-6\\cos^2\\alpha\\sin^2\\alpha"
"-4i\\cos\\alpha\\sin^3\\alpha+\\sin^4\\alpha"
"\\cos(4\\alpha)=\\cos^4\\alpha-6\\cos^2\\alpha\\sin^2\\alpha+\\sin^4\\alpha"
"=\\cos^5\\alpha+5i\\cos^4\\alpha\\sin\\alpha-10\\cos^3\\alpha\\sin^2\\alpha"
"-10i\\cos^2\\alpha\\sin^3\\alpha+5\\cos \\alpha\\sin^4\\alpha+i\\sin^5\\alpha"
"\\sin(5\\alpha)=5\\cos^4\\alpha\\sin\\alpha-10\\cos^2\\alpha\\sin^3\\alpha+\\sin^5\\alpha"
3,
"+20z^3z^{-3}+15z^2z^{-4}+6zz^{-5}+z^{-6}"
"=(z^6+z^{-6})+6(z^4+z^{-4})+15(z^2+z^{-2})+20"
"=2\\cos(6\\alpha)+12\\cos(4\\alpha)+30\\cos(2\\alpha)+20"
"\\cos^6\\alpha=\\dfrac{1}{32}\\cos(6\\alpha)+\\dfrac{3}{16}\\cos(4\\alpha)+\\dfrac{15}{32}\\cos(2\\alpha)+\\dfrac{5}{16}"
4.
"(2i\\sin\\alpha)^4=(z-z^{-1})^4"
"128\\cos^3\\alpha\\sin^4\\alpha=(z+z^{-1})^3(z-z^{-1})^4"
"=(z^2-z^{-2})^3(z-z^{-1})"
"=(z^6-3z^2+3z^{-2}-z^{-6})(z-z^{-1})"
"=z^7-z^5-3z^3+3z+3z^{-1}-3z^{-3}-z^{-5}+z^{-7}"
"=(z^7+z^{-7})-(z^5+z^{-5})-3(z^3+z^{-3})+3(z+z^{-1})"
"=2\\cos(7\\alpha)-2\\cos(5\\alpha)-6\\cos(3\\alpha)+6\\cos\\alpha"
"\\cos^3\\alpha\\sin^4\\alpha=\\dfrac{1}{64}\\cos(7\\alpha)-\\dfrac{1}{64}\\cos(5\\alpha)"
"-\\dfrac{3}{64}\\cos(3\\alpha)+\\dfrac{3}{64}\\cos\\alpha"
Comments
Leave a comment