1. Determine the poles and residue at each poles of
f(z)=2z+1/z²-z-2 over C=|z|=5/2 Hence Evaluate
∮c 2z+1/z²-z-2 dz over C=|z|=5/2
"z\u00b2-z-2=(z-2)(z+1)"
Poles:
"z_0=2,z_0=-1"
"res\\ f(2)=\\displaystyle{\\lim_{z\\to 2}}(f(z)(z-2))=\\displaystyle{\\lim_{z\\to 2}}(\\frac{2z+1}{z+1})=5\/3"
"res\\ f(-1)=\\displaystyle{\\lim_{z\\to -1}}(f(z)(z+1))=\\displaystyle{\\lim_{z\\to -1}}(\\frac{2z+1}{z-2})=1\/3"
"f(z_0)=\\frac{1}{2\\pi i}\\oint_C\\frac{f(z)}{z-z_0}dz" , "z_0\\isin D"
"\\frac{1}{(z-2)(z+1)}=\\frac{A}{z-2}+\\frac{B}{z+1}"
"A(z+1)+B(z-2)=1"
"A+B=0"
"A-2B=1"
"B=-1\/3,A=1\/3"
"\\oint_C\\frac{f(z)}{z-z_0}dz=\\frac{2\\pi i}{3}\\oint\\frac{2z+1}{z-2}dz-\\frac{2\\pi i}{3}\\oint\\frac{2z+1}{z+1}dz=\\frac{2\\pi i}{3}(2z+1)|_{z=2}-\\frac{2\\pi i}{3}(2z+1)|_{z=-1}="
"=\\frac{10\\pi i}{3}+\\frac{2\\pi i}{3}=4\\pi i"
Comments
Leave a comment