1. Evaluate the integral: ∫c 1/z² dz
Where the contour C is
a) The line segment with initial point -1 and final point i.
b)The arc of the unit circle Imz>=0 with initial point -1 and final point i.
2. Evaluate the complex number :
[(15+7j)(3-2j)*/(4+6j)*(3∠60°)]*
3. Determine whether the seris is convergent or divergent. If it is convergent find its sum
Σ upper limit ∞, lower limit k=3 (8^-k 4^k+2 -3^k+3/6^k)
2.
"\\frac{(15+7j)(3-2j)}{(4+6j)(1.5+j\\sqrt{3}\/2)}=\\frac{2(45+14+7j)}{12+(18+6\\sqrt{3})j-6\\sqrt{3}}=\\frac{(118+14j)([12-6\\sqrt{3}-(18+6\\sqrt{3})j])}{[(12-6\\sqrt{3})^2+(18+6\\sqrt{3})^2]}="
"=\\frac{1416-708\\sqrt{3}+252+84\\sqrt{3}+(168-84\\sqrt{3}-2124-708\\sqrt{3})j}{144-144\\sqrt{3}+108+324+216\\sqrt{3}+108}="
"=\\frac{1668-624\\sqrt{3}-(1956+792\\sqrt{3})j}{684+72\\sqrt{3}}=\\frac{139-52\\sqrt{3}}{57+6\\sqrt{3}}-\\frac{163+66\\sqrt{3}}{57+6\\sqrt{3}}j"
3.
"\\displaystyle{\\sum^{\\infin}_{k=3}}\\frac{8^{-k}4^{k+2}-3^{k+3}}{6^k}"
"\\displaystyle{\\lim_{k\\to \\infin}}|\\frac{a_{k+1}}{a_k}|=\\displaystyle{\\lim_{k\\to \\infin}}|\\frac{8^{-k-1}4^{k+3}-3^{k+4}}{6^{k+1}}\\frac{6^k}{8^{-k}4^{k+2}-3^{k+3}}|="
"=\\displaystyle{\\lim_{k\\to \\infin}}|\\frac{2^{3-k}-3^{k+4}}{6(2^{4-k}-3^{k+3})}|=\\frac{3}{6}=\\frac{1}{2}<1"
The series is convergent.
It can be represented as two geometric series:
"\\displaystyle{\\sum^{\\infin}_{k=3}}\\frac{8^{-k}4^{k+2}-3^{k+3}}{6^k}=\\displaystyle{\\sum^{\\infin}_{k=3}}\\frac{16}{12^k}-\\displaystyle{\\sum^{\\infin}_{k=3}}\\frac{27}{2^k}="
"=\\frac{16}{12^3}(\\frac{1}{1-1\/12})-\\frac{27}{2^3}(\\frac{1}{1-1\/2})=-\\frac{2669}{396}=-6.74"
1.
i)
"\\int_C\\frac{1}{z^2}dz=\\int^1_0\\frac{1+i}{(-1+(1+i)t)^2}dt=-\\frac{1}{-1+(1+i)t}|^1_0=-1-1\/i=-1+i"
ii)
"\\int_C\\frac{1}{z^2}dz=\\int^{\\pi\/2}_{\\pi}\\frac{1}{e^{2i\\theta}}ie^{}d\\theta=-e^{-i\\theta}|^{\\pi\/2}_{\\pi}=-1+i"
Comments
Leave a comment