(8.1) Let z = z1/z2 where z1 = tan θ + i and z2 = z1. Find an expression for z n with n ∈ N.
(8.2) Let z = cos θ − i(1 + sin θ). Determine 2z + i / −1 − iz
(8.1) Let "z = \\frac{z_1}{z_2}" where "z_1 = \\tan \u03b8 + i" and "z_2 = z_1". It follows that "z = \\frac{z_1}{z_2}=\\frac{\\tan \u03b8 + i}{\\tan \u03b8 + i}=1," and hence "z^n=1" for any "n \\in\\N." .
(8.2) Let "z = \\cos \u03b8 \u2212 i(1 +\\sin \u03b8)". Then
"\\frac{2z + i}{ \u22121 \u2212 iz}=\\frac{2(\\cos \u03b8 \u2212 i(1 +\\sin \u03b8))+i}{-1-i(\\cos \u03b8 \u2212 i(1 +\\sin \u03b8))}=\n\\frac{2\\cos \u03b8 + i(-1 +2\\sin \u03b8)}{-2-\\sin \u03b8-i\\cos \u03b8}="
"-\\frac{2\\cos \u03b8 + i(-1 +2\\sin \u03b8)}{2+\\sin \u03b8+i\\cos \u03b8}=-\\frac{(2\\cos \u03b8 + i(-1 +2\\sin \u03b8))(2+\\sin \u03b8-i\\cos \u03b8)}{(2+\\sin \u03b8+i\\cos \u03b8)(2+\\sin \u03b8-i\\cos \u03b8)}=\n-\\frac{2\\cos \u03b8+2\\cos \u03b8\\sin \u03b8-2i\\cos^2 \u03b8+i(-2-\\sin \u03b8+4\\sin \u03b8+2\\sin^2 \u03b8)-\\cos \u03b8+2\\sin \u03b8\\cos \u03b8 }{(2+\\sin \u03b8)^2+\\cos^2 \u03b8}=\n-\\frac{\\cos \u03b8+2\\sin 2\u03b8+i(-2+3\\sin \u03b8-2\\cos 2\u03b8) }{5+4\\sin \u03b8}=\n-\\frac{\\cos \u03b8+2\\sin 2\u03b8}{5+4\\sin \u03b8}+i\\frac{2-3\\sin \u03b8+2\\cos 2\u03b8 }{5+4\\sin \u03b8}."
Comments
Leave a comment