Answer to Question #223097 in Complex Analysis for ulmighty super

Question #223097

Using the fact that if z = r(cosθ +isinθ) then z2 = r2(cosθ +isinθ), find the square root of

2√3 -2i


1
Expert's answer
2021-09-15T03:05:29-0400

Let   z=232iargz=arctan(223)=π6z=12+4=4    z=4eiπ6z12=±2eiπ12=±2cos(π12)(±i2sin(π12))=±2cos(π12)i2sin(π12)It implies that the square root is2cos(π12)i2sin(π12)  or2cos(π12)+i2sin(π12)\displaystyle \textsf{Let}\,\,\, z = 2\sqrt{3} - 2i\\ \arg{z} = \arctan\left(\frac{-2}{2\sqrt{3}}\right) = -\frac{\pi}{6}\\ |z| = \sqrt{12 + 4} = 4\\ \implies z = 4e^{-\frac{i\pi}{6}}\\ \begin{aligned} z^{\frac{1}{2}} &= \pm 2e^{-\frac{i\pi}{12}} \\&= \pm 2\cos\left(\frac{\pi}{12}\right) - \left(\pm i2\sin\left(\frac{\pi}{12}\right)\right) \\&= \pm 2\cos\left(\frac{\pi}{12}\right) \mp i2\sin\left(\frac{\pi}{12}\right) \end{aligned}\\ \textsf{It implies that the square root is}\\2\cos\left(\frac{\pi}{12}\right) - i2\sin\left(\frac{\pi}{12}\right) \,\,\textup{or}\\ -2\cos\left(\frac{\pi}{12}\right) + i2\sin\left(\frac{\pi}{12}\right)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment