find the inverse laplace transform of F (S)=10 (S+1)/S (S+2)(S+3)^3
"+\\dfrac{C}{s+3}+\\dfrac{D}{(s+3)^2}+\\dfrac{E}{(s+3)^3}"
"10(s+1)=A(s+2)(s+3)^3+Bs(s+3)^3"
"+Cs(s+2)(s+3)^2+Ds(s+2)(s+3)"
"+Es(s+2)"
"s=0,10=A(2)(3)^3=>A=\\dfrac{5}{27}"
"s=-2,-10=B(-2)(1)^3=>B=5"
"s=-3,-20=E(-3)(-1)=>E=-\\dfrac{20}{3}"
"s^4, 0=A+B+C=>C=-\\dfrac{140}{27}"
"s^3, 0=A(9+2)+9B+C(6+2)+D"
"=>D=-\\dfrac{50}{9}"
"\\dfrac{10(s+1)}{s(s+2)(s+3)^3}=\\dfrac{5}{27}\\cdot\\dfrac{1}{s}+5\\cdot\\dfrac{1}{s+2}"
"-\\dfrac{140}{27}\\cdot\\dfrac{1}{s+3}-\\dfrac{50}{9}\\cdot\\dfrac{1}{(s+3)^2}-\\dfrac{20}{3}\\cdot\\dfrac{1}{(s+3)^3}"
"-\\dfrac{140}{27}e^{-3t}-\\dfrac{50}{9}te^{-3t}-\\dfrac{10}{3}t^2e^{-3t}"
Comments
Leave a comment