by contour techniques "\\int" 1/(2+cos"\\theta" ) limit 0 to 2"\\pi"
"\\int\\limits_{0}^{2\\pi} \\frac{d\\theta}{2+\\cos \\theta}=\\int\\limits_{0}^{2\\pi} \\frac{2d\\theta}{4+e^{i\\theta}+e^{-i\\theta}}=\\int\\limits_{0}^{2\\pi} \\frac{2e^{i\\theta}d\\theta}{4e^{i\\theta}+e^{2i\\theta}+1}="
"=\\frac{2}{i}\\int\\limits_{0}^{2\\pi} \\frac{de^{i\\theta}}{e^{2i\\theta}+4e^{i\\theta}+1}=\\frac{2}{i}\\oint\\limits_{|z|=1}\\frac{dz}{z^2+4z+1}=\\frac{2}{i}\\oint\\limits_{|z|=1}\\frac{dz}{(z+2+\\sqrt{3})(z+2-\\sqrt{3})}"
Only one pole, "z=-2+\\sqrt{3}", is inside the contour "\\{|z|=1\\}", therefore, by the residue theorem we have
"\\int\\limits_{0}^{2\\pi} \\frac{d\\theta}{2+\\cos \\theta}=\\frac{2}{i}2\\pi i\\,{\\rm res}_{z=-2+\\sqrt{3}}\\frac{1}{(z+2+\\sqrt{3})(z+2-\\sqrt{3})}="
"=4\\pi\\lim\\limits_{z\\to -2+\\sqrt{3}}\\frac{1}{z+2+\\sqrt{3}}=\\frac{2\\pi}{\\sqrt{3}}"
Answer. "\\frac{2\\pi}{\\sqrt{3}}"
Comments
Leave a comment