Multiply the numerator and denominator of this complex number by j
So in a rectangular form we have
where
In polar form the complex number z is written as
where
"r=\\left| z \\right|=\\sqrt{{{x}^{2}}+{{y}^{2}}}=\\sqrt{{{0}^{2}}+{{\\left( -\\frac{1}{2} \\right)}^{2}}}=\\sqrt{\\frac{1}{4}}=\\frac{1}{2}""\\theta =\\arctan \\left( \\frac{y}{x} \\right)=\\arctan \\left( \\frac{-1\/2}{0} \\right)=\\arctan \\left( -\\infty \\right)=-\\frac{\\pi }{2}"or otherwise
"\\theta =-\\frac{\\pi }{2}+2\\pi =\\frac{3\\pi }{2}"Substituting the obtained values, we get the polar form of this z
"z=\\frac{1}{2}\\left( \\cos \\left( \\frac{3\\pi }{2} \\right)+j\\sin \\left( \\frac{3\\pi }{2} \\right) \\right)"
Comments
Leave a comment