I.In each of Problems 23 through 30, use the method of reduction of order to find a second solution of the given differential equation.
1. t^2y″ − 4ty′ + 6y = 0, y1(t) = t^2
2. xy″ − y′ + 4x^3y = 0, x > 0; y_1(x) = sin x^2
1.
"y_2=y_1v"
"y_2=t^2v,y_2'=2tv+t^2v',y_2''=2v+2tv'+2tv'+t^2v''=2v+4tv'+t^2v''"
"t^2(2v+4tv'+t^2v'') \u2212 4t(2tv+t^2v')+ 6t^2v = 0"
"t^2v''=0"
"v=t"
"y_2=t^3"
2.
Wronskian:
"W=y_1y_2'-y_1'y_2=ce^{-\\int P(x)dx}"
where "P(x)=-1\/x"
then:
"W=cx"
"y_2'sinx^2-2y_2xcosx^2=cx"
"y_2=uv,y_2'=u'v+uv'"
"(u'v+uv')sinx^2-2uvxcosx^2=cx"
"u'v=cx\/(sinx^2)"
"v'-2vxcotx^2=0"
"dv\/v=2xcotx^2dx"
"lnv=ln(sinx^2)"
"v=sinx^2"
"du=cxdx\/(sinx^4)"
"u=\\frac{4ln(sinx)+csc^2x(x(cscxcos3x-3cotx)-1)}{6}"
"y_2=\\frac{4ln(sinx)+csc^2x(x(cscxcos3x-3cotx)-1)}{6}sin^2x"
Comments
Leave a comment