P2-xp-q=0 solve by charpit method
Given differential equation is "p^2 - xp-q=0\\Rightarrow p^2 = q + xp" (1)
We can write it as "f(x,y,z,p,q) = q + xp - p^2 = 0"
"\\frac{\\partial f }{\\partial x } = p" , "\\frac{\\partial f }{\\partial y } = 0" , "\\frac{\\partial f }{\\partial z } = 0" , "\\frac{\\partial f }{\\partial p} = x-2p" , "\\frac{\\partial f }{\\partial q } = 1"
Hence, equation will be
"\\frac{dx}{-\\frac{\\partial f }{\\partial p } } = \\frac{dy}{-\\frac{\\partial f }{\\partial q } } = \\frac{dz}{-p\\frac{\\partial f }{\\partial p }-q\\frac{\\partial f }{\\partial q } } = \\frac{dp}{\\frac{\\partial f }{\\partial x }+p\\frac{\\partial f }{\\partial z } } = \\frac{dz}{\\frac{\\partial f }{\\partial y }+q\\frac{\\partial f }{\\partial z } }"
"\\frac{dx}{2p-x } = \\frac{dy}{-1 } = \\frac{dz}{-p(x-2p)-q } = \\frac{dp}{p} = \\frac{dz}{0 }"
Taking "\\frac{dy}{-1 } = \\frac{dp}{p}"
Integrating it we get,
"p = ae^{-y}"
Then from given equation (1),
"q = -axe^{-y} + a^2e^{-2y}"
Now, "dz = pdx + qdy = ae^{-y}dx + (-axe^{-y}+a^2e^{-2y})dy"
Integrating it both sides, we get
"z = axe^{-y}-\\frac{1}{2}a^2e^{-2y} + b"
Comments
Leave a comment