Solve
(D^(2)+DD'-6D'^(2))z=y cosx
Answer:
Given:
Now, the Auxiliary equation will be:
"m \n^2\n +m\u22126=0\n\u27f9(m\u22122)(m+3)=0\n\u27f9m=2,\u22123"
Hence,
"C.F=\u03d5_ \n1\n\u200b\n (y+2x)+\u03d5 \n_2\n\u200b\n (y\u22123x)"
Now,
"\\implies P.I=\\frac{1}{(D+3D^{'})(D-2D^{'})}ycosx=\\frac{1}{D+3D^{'}}\\int_{D-2D^{'}}ycosxdx=\\frac{1}{D+3D^{'}}[(c_1-2x)sinx-2cosx]=\\frac{1}{D+3D^{'}}(ysinx-2cosx)=\\int_{D+3D^{'}}(ysinxdx)-\\int_{D+3D^{'}}2cosxdx=\\int _{D+3D^{'}}(c_2+3x)sinxdx=\\int _{D+3D^{'}}2cosxdx"
"(y=c_2+3x)""\\implies P.I=-ycosx+\\int cosxdx = -ycosx +sinx"
Therefore the complete solution is
"C.F+P.I= \\phi_1(y_+2x)+\\phi_2(y-3x)+-ycosx+sinx"
Comments
Leave a comment