Solve the partial differential equation (3D² +10DD'+ 3D ^1^2)z^ =e^x-y
Since, the given equation is unclear, we assume it as:
"\\quad Solve \\left(D^{2}+4 D+3\\right) y=e^{-3 x}"
Solution: Given equation is
"\\left(D^{2}+4 D+3\\right) y=e^{-3 x}"
A E is "\\quad D^{2}+4 D+3=0"
"\\begin{aligned}\n\n&(D+1)(D+3)=0 \\quad D=-1, \\quad D=-3 \\\\\n\n\\therefore \\quad & C F=c_{1} e^{-x}+c_{2} e^{-3 x} \\\\\n\n& P I=\\frac{1}{(D+1)(D+3)} e^{-3 x}\n\n\\end{aligned}"
put D=-3 in f(D) then
"\\begin{aligned}\n\nP I &=\\frac{1}{0} e^{-3 x} \\quad \\therefore \\text { method fails } \\\\\n\n\\therefore \\quad P I &=\\frac{e^{-3 x}}{(-3+1)(D-3+3)}\\{1\\}=\\frac{e^{-3 x}}{(-2)} \\frac{1}{D}\\{1\\}=\\frac{e^{-3 x}}{-2} x \\\\\n\nG . S . &=C F+P I\n\n\\end{aligned}"
"y=c_{1} e^{-x}+c_{2} e^{-3 x}-\\frac{e^{-3 x}}{2} x"
Comments
Leave a comment