Find a complete integral of x(1 + y)p = y(1 + x)q
"Let\\ \\ p=\\frac{\\partial z}{\\partial x}\\ \\ \\ and\\ \\ \\ \\ q=\\frac{\\partial z}{\\partial y}\\ \\ \\ \\\\ \nThen\\ \\ \\ x\\left(\\mathrm{1}+y\\right)\\frac{\\partial z}{\\partial x}\\ \\ =\\ \\ y\\left(\\mathrm{1}+x\\right)\\frac{\\partial z}{\\partial y} \\\\ \n \\\\ \nx\\left(\\mathrm{1}+y\\right)\\frac{dz}{dx}\\ \\ =\\ \\ y\\left(\\mathrm{1}+x\\right)\\frac{dz}{dy} \\\\ \n \\\\ \n\\frac{\\left(\\mathrm{1}+y\\right)dy}{y}\\ \\ =\\ \\ \\frac{\\left(\\mathrm{1}+x\\right)}{x}dx \\\\ \n \\\\ \n\\int{\\left(\\mathrm{1}+\\frac{\\mathrm{1}}{y}\\right)}dy\\ \\ =\\ \\ \\int{\\left(\\mathrm{1}+\\frac{\\mathrm{1}}{x}\\right)}dx \\\\ \n \\\\ \n\\left(y+\\mathrm{ln}\\left(y\\right)\\right)\\ \\ =\\ \\ \\left(x+\\mathrm{ln}\\left(x\\right)\\right)\\ \\ +\\ \\ C"
Comments
Leave a comment