y'=cos(x+y)
Instruction:
Solve "y'=cos(x+y)"
Solution:
"y'=cos(x+y) ...(1)"
Let "x+y = t" ...(2)
"1+y'=\\frac{dt}{dx}\\Rightarrow y'=\\frac{dt}{dx}-1"
From (1), we get
"\\frac{dt}{dx}-1=\\cos t\\\\\\Rightarrow \\frac{dt}{dx}=1+\\cos t\\\\\\Rightarrow \\frac{dt}{dx}=2\\cos^2 \\frac{t}{2}\\\\\n\\Rightarrow \\sec^2\\frac{t}{2} dt=2dx"
Integrating both sides, we get
"2\\tan \\frac{t}{2}=2x+c\\\\\n\\Rightarrow 2\\tan \\frac{x+y}{2}=2x+c\\\\" [From (2)]
Comments
Leave a comment