Using Charpit’s method, solve the equation:
zp²-y²p+y²q =0
"\\displaystyle\nzp^2-y^2p+y^2q=0\\\\\nLet\\ f(x,y,z,p,q)=zp^2-y^2p+y^2q,\\ then\\\\\nf_x=0,\\ f_y=-2yp+2yq,\\ f_z=p^2,\\ f_p=2zp-y^2,\\ f_q=y^2\\\\\n\\text{Now, Charpit's auxiliary equations are; }\\\\\n\\frac{dx}{-f_p}=\\frac{dy}{-f_q}=\\frac{dz}{-pf_p-qf_q}=\\frac{dp}{f_x+pf_z}=\\frac{dq}{f_y+qf_z}\\\\\n\\Rightarrow\\frac{dx}{y^2-2pz}=\\frac{dy}{-y^2}=\\frac{dz}{py^2-2p^2z-qy^2}=\\frac{dp}{p^3}=\\frac{dq}{2yq-2yp+qp^2}\\\\\n\\text{From the second and fourth ratio, we get:}\n\\frac{dy}{-y^2}=\\frac{dp}{p^3}\\Rightarrow p=\\sqrt{\\frac{y}{ay-2}}, \\text{where a is an ar-}\\\\\n\\text{bitrary constant.}\\\\\n\\Rightarrow0=zp^2-y^2p+y^2q=z\\left(\\sqrt{\\frac{y}{ay-2}}\\right)^2-y^2\\left(\\sqrt{\\frac{y}{ay-2}}\\right)+y^2q\\\\\n\\Rightarrow q=\\sqrt{\\frac{y}{ay-2}}-\\frac{z}{y(ay-2)}\\\\\nBut,\\ dz=pdx+qdy=\\left(\\sqrt{\\frac{y}{ay-2}}\\right) dx+\\left(\\sqrt{\\frac{y}{ay-2}}-\\frac{z}{y(ay-2)}\\right)dy\\\\\n\\text{Multiply both sides by}\\ y\\sqrt{ay-2}, \\text{we have;}\\\\\n(y\\sqrt{ay-2})dz=y\\sqrt{y}\\ dx+y\\sqrt{y}\\ dy-\\frac{z\\sqrt{ay-2}}{ay-2}\\ dy\\\\\n\\Rightarrow (y\\sqrt{ay-2})dz=y^{\\frac{3}{2}}\\ dx+y^{\\frac{3}{2}}\\ dy-\\frac{z\\sqrt{ay-2}}{ay-2}\\ dy\\\\\n\\Rightarrow (y\\sqrt{ay-2})dz=y^{\\frac{3}{2}}\\ dx+y^{\\frac{3}{2}}\\ dy-\\frac{z}{\\sqrt{ay-2}}\\ dy\\\\\n\\text{Integrating both sides yields:}\\\\\nyz\\sqrt{ay-2}=xy^{\\frac{3}{2}}+\\frac{2y^{\\frac{3}{2}}}{5}-\\frac{2z\\sqrt{ay-2}}{a}+b,\\ \\text{(where b is an arbitrary constant)}\\\\\n\\text{which is the solution.}"
Comments
Leave a comment