Using Charpit’s method, solve:
P²+ q² -2px -2qy +1=0
"f(x, y, z, p, q)=p^{2}+q^{2}-2 p x-2 q y+1=0"
Charpit's auxiliary equation are:
"\\frac{d p}{f_{x}+p f_{z}}=\\frac{d q}{f_{y}+q f_{z}}=\\frac{d z}{-p f_{p}-q f_{q}}=\\frac{d x}{-f_{p}}=\\frac{d y}{-f_{q}}"
or
"\\frac{d p}{p}=\\frac{d q}{q}=\\frac{d z}{p(p-x)+q(q-y)}=\\frac{d x}{p-x}=\\frac{d y}{q-y}"
Taking first two fractions,
"\\frac{d p}{p}=\\frac{d q}{q}"
Integrating, "\\ln p=\\ln q+\\ln a \\quad or \\quad p=a q."
Putting "p=a q" into f(x, y, z, p, q), we get:
"\\begin{aligned}\n\n&a^{2} q^{2}+q^{2}-2 a q x-2 q y+1=0 \\\\\n\n&q^{2}\\left(a^{2}+1\\right)-2 q(a x+y)+1=0\n\n\\end{aligned}"
Solve for q
"q=\\frac{2(a x+y) \\pm \\sqrt{4(a x+y)^{2}-4\\left(a^{2}+1\\right)}}{2\\left(a^{2}+1\\right)}"
Let's "(a x+y)=u" and "\\left(a^{2}+1\\right)=b=" const
"q=\\frac{u \\pm \\sqrt{u^{2}-b}}{b}"
"p=a q=\\frac{a}{b}\\left(u \\pm \\sqrt{u^{2}-b}\\right)"
We know that
"d z=p d x+q d y=a q d x+q d y=q(a d x+d y)=q d(a x+y)=q d u"
Integrating
"z=\\int \\frac{u \\pm \\sqrt{u^{2}-b}}{b} d u=\\frac{u^{2}}{2 b} \\pm \\frac{1}{b} \\int \\sqrt{u^{2}-b} d u="
"\\begin{aligned}\n\n&\\quad=\\frac{u^{2}}{2 b} \\pm \\frac{1}{2} u \\sqrt{u^{2}-b}-\\frac{1}{2} b \\ln \\left(\\sqrt{u^{2}-b}+u\\right)+C= \\\\\n\n&\\quad=\\frac{(a x+y)^{2}}{2 b} \\pm \\frac{1}{2}(a x+y) \\sqrt{(a x+y)^{2}-b}-\\frac{1}{2} b \\ln \\left(\\sqrt{(a x+y)^{2}-b}+(a x+y)\\right)+C\n\n\\end{aligned}"
Comments
Leave a comment