(D^ 2 -40D' +4D'^2)Z=e^ (2x+y)
"(D^2-4DD'+4D'^2)z=e^{2x+y}\\\\\n\\text{The auxilliary equation is }\\\\\nm^2-4m+4=0\\\\\n(m-2)^2=0\\\\\nm=2 \\text{ twice}\\\\\n\\text{The complementary function is:}\\\\"
To get the particular integral.
"P.I=\\frac{1}{(D^2-4DD'+4D'^2)}e^{2x+y}\\\\\nP.I= \\frac{1}{(D-2D')^2}e^{2x+y}\\\\\nP.I=\\frac{x^2}{1^2\\cdot \\lfloor{2}}e^{2x+y}\\\\\nP.I=\\frac{x^2}{2}e^{2x+y}"
Hence, the complete solution is the sum of the complementary function and the particular integral.
Comments
Leave a comment