Reduce the homogeneous equation to the separated one
(x+2y)dx-xdy=0
"(x+2y)dx-xdy=0\\\\\n(x+2y)dx=xdy\\\\\n\\frac{dy}{dx}=\\frac{x+2y}{x}...(1)\\\\"
Let "y=vx"
"\\frac{dy}{dx}=v+x\\frac{dv}{dx}"
From (1),
"v+x\\frac{dv}{dx}=\\frac{x+2vx}{x}=1+2v\\\\\nx\\frac{dv}{dx}=1+v\\\\\n\\frac{dv}{1+v}=\\frac{dx}{x}\\\\"
Integrating both sides, we get
"ln(1+v)= lnx+ ln c\\\\\nln(1+v)-lnx=lnc\\\\\nln(\\frac{1+v}{x})=lnc\\\\\n\\frac{1+v}{x}=c\\\\\n\\frac{1+\\frac{y}{x}}{x}=c\\\\\nx+y=x^2c"
Comments
Leave a comment