find a solution to the boundary value problem y²+4y=0 y(π/8)=0, y(π/6)=1 if the general solution to the differential equation is y(x)=c1sin2x + c2cos2x
The general solution is
Given "y(\\pi\/8)=0"
"c_1+c_2=0"
"c_1=-c_2"
Given "y(\\pi\/6)=1"
"c_1(\\dfrac{\\sqrt{3}}{2})+c_2(\\dfrac{1}{2})=1"
"\\sqrt{3}c_1+c_2=2"
Then
"\\sqrt{3}c_1-c_1=2"
"c_1=\\dfrac{2}{\\sqrt{3}-1}"
"c_1=\\sqrt{3}+1"
"c_2=-(\\sqrt{3}+1)"
The solution to the boundary value problem is
"y=(\\sqrt{3}+1)\\big(\\sin(2x)-\\cos (2x)\\big)"
Comments
Leave a comment