(D² +40D'² +3D' )Z=ycos x
The actual question is;
"\\displaystyle\n(D^2+4DD^\\prime+3(D^\\prime)^2)z=y\\cos x, \\text{where }D=\\frac{\\partial}{\\partial x}, \\text{and}\\ D^\\prime =\\frac{\\partial}{\\partial y}"
To find the complementary function (C.F), let "\\displaystyle\nD=m, \\text{and }D^\\prime=1," then the auxiliary equation of the given PDE in terms of variable m is;
"\\displaystyle\nm^2+4m+3=0"
"\\displaystyle\n\\Rightarrow (m+1)(m+3)=0\\Rightarrow m=-1,-3."
Thus the complementary function of the given PDE is;
"\\displaystyle\n\\color{green}{C.F=z_c=f_1(y-x)+f_2(y-3x)}"
Next, to find the particular integral (P.I) of the given PDE, we proceed as follows;
"\\displaystyle\nP.I=\\frac{1}{(D^2+4DD^\\prime+3(D^\\prime)^2)}y\\cos x=\\frac{1}{(D+D^\\prime)(D+3D^\\prime)}y\\cos x"
"\\displaystyle\n\\ =\\frac{1}{(D+D^\\prime)}\\int (c+3x)\\cos x\\ dx, \\text{where }y=c+3x\\\\"
"\\displaystyle\n\\ =\\frac{1}{(D+D^\\prime)}[(c+3x)\\sin x+3\\cos x], \\text{ by integration by parts}"
"\\displaystyle\n\\ =\\frac{1}{(D+D^\\prime)}[y\\sin x+3\\cos x], \\text{ since }y=c+3x"
"\\displaystyle\n\\ =\\int[(c+x)\\sin x+3\\cos x]\\ dx, \\text{where we put }y=c+x"
"\\displaystyle\n\\ =\\int[(c+x)\\sin x\\ dx]+3\\int \\cos x\\ dx"
"\\displaystyle\n\\ =[(c+x)(-\\cos x)+\\sin x]+3\\sin x\\ ,\\text{integration by parts}"
"\\displaystyle\n\\ =-y\\cos x+4\\sin x,\\ \\text{where we put back }y=c+x"
Thus the particular integral of the given PDE is;
"\\displaystyle\n\\color{blue}{P.I=z_p=-y\\cos x+4\\sin x}"
Since complete solution (z) is "\\displaystyle\n\\color{red}{z=z_c+z_p}", thus we have the complete solution as;
"\\displaystyle\n\\color{red}{z=f_1(y-x)+f_2(y-3x)-y\\cos x+4\\sin x}"
Comments
Leave a comment