Solve the first order linear inhomogeneous differential equation using the bernoulli method
xy,-2y=2x4
"y' - 2\\frac{y}{x} = 2{x^3}"
Substitution: "y = uv \\Rightarrow y' = u'v + uv'"
Then
"u'v + uv' -2 \\frac{{uv}}{x} = 2{x^3}"
"u'v + u\\left( {v' - 2\\frac{v}{x}} \\right) = 2{x^3}"
Let
"v' - \\frac{{2v}}{x} = 0 \\Rightarrow \\frac{{dv}}{{dx}} = \\frac{{2v}}{x} \\Rightarrow \\frac{{dv}}{v} = \\frac{{2dx}}{x} \\Rightarrow \\ln v = \\ln {x^2} \\Rightarrow v = {x^2}"
Then
"u'{x^2} = 2{x^3} \\Rightarrow u' = 2x \\Rightarrow u = {x^2} + C \\Rightarrow y = uv = \\left( {{x^2} + C} \\right){x^2} = {x^4} + C{x^2}"
Answer: "y = {x^4} + C{x^2}"
Comments
Leave a comment