Solve the differential equation (D^3+D^2+D+1)y=Sinx
Corresponding homogeneous equation
"(D^3+D^2+D+1)y=0"
Characteristic (auxiliary)equation
"r^2(r+1)+(r+1)=0"
"(r+1)(r^2+1)=0"
"r_1=-1, r_2=i, r_3=-i"
The general solution of the homogeneous differential equation is
The particular solution of the non homogeneous equation is
"y_p'=A\\sin x+Ax\\cos x+B\\cos x-Bx\\sin x"
"y_p''=2A\\cos x-Ax\\sin x-2B\\sin x-Bx\\cos x"
"y_p'''=-3A\\sin x-Ax\\cos x-3B\\cos x+Bx\\sin x"
Substitute
"+2A\\cos x-Ax\\sin x-2B\\sin x-Bx\\cos x"
"+A\\sin x+Ax\\cos x+B\\cos x-Bx\\sin x"
"+Ax\\sin x+Bx\\cos x=\\sin x"
"x\\sin x:B-A-B+A=0"
"x\\cos x:-A-B+A+B=0"
"\\sin x:-3A-2B+A=1"
The general solution of the given non homogeneous differential equation is
Comments
Leave a comment