Solve the following initial value problem using Laplace transform. y''+16y = 2 sin 4t, y(0)=-1/2; y'(0)=0
"y''+16y=2\\sin 4t, y(0)=-\\frac{1}{2}, y'(0)=0\\\\"
Use Laplace transform
"L_t [y''+16y](p)=L_t[2\\sin 4t](p)\\\\\nL_t [y''](p)+L_t[16y](p)=2L_t[\\sin 4t](p)\\\\\np^2L_t[y]-py(0)-y'(0)+16L_t[y]=2\\cdot\\frac{4}{p^2+16}\\\\\np^2L_t[y]-p(-\\frac{1}{2})-0+16L_t[y]=2\\cdot\\frac{4}{p^2+16}\\\\\n(p^2+16)L_t[y]=\\frac{8}{p^2+16}-\\frac{p}{2}\\\\\nL_t[y]=\\frac{8}{(p^2+16)^2}-\\frac{p}{2(p^2+16)}\\\\\ny=L_t^{-1}[\\frac{8}{(p^2+16)^2}-\\frac{p}{2(p^2+16)}](t)\\\\\ny=L_t^{-1}[\\frac{8}{(p^2+16)^2}](t)-L_t^{-1}[\\frac{p}{2(p^2+16)}](t)\\\\\ny=\\frac{1}{16}(-4t\\cos 4t+\\sin 4t) -\\frac{1}{2} \\cos 4t"
Comments
Leave a comment