{F} Y(4x+y)dx-2(x^2-y)dy=0
"\\left(2 y-2 x^{2}\\right) d y+\\left(y^{2}+4 x y\\right) d x=0"
Equation in total differentials "\\mu(x, y) M(x, y) \\mathrm{d} y+\\mu(x, y) N(x, y) \\mathrm{d} x=0"
where "M(x, y)=2 y-2 x^{2}\\ and\\ N(x, y)=y^{2}+4 x y"
Check for full differential: "M(x, y)_{x}^{\\prime}=-4 x \\neq 2 y+4 x=N(x, y)_{y}^{\\prime}"
Search for an integrating factor "\\mu(x, y)^{?} M(x, y)_{x}^{\\prime}=\\frac{\\partial M}{\\partial x}\\ and\\ N(x, y)_{y}^{\\prime}=\\frac{\\partial N}{\\partial y}" From condition: "M \\frac{\\partial \\mu}{\\partial x}-N \\frac{\\partial \\mu}{\\partial y}=\\mu\\left(\\frac{\\partial N}{\\partial y}-\\frac{\\partial M}{\\partial x}\\right)"
Let "\\mu(x, y)=\\mu(y) \\Rightarrow \\frac{\\partial \\mu}{\\partial x}=0" then the condition becomes: "\\frac{1}{\\mu} \\frac{\\mathrm{d} \\mu}{\\mathrm{d} y}=-\\frac{1}{N}\\left(\\frac{\\partial N}{\\partial y}-\\frac{\\partial M}{\\partial x}\\right)" where right side - function from y
"\\begin{gathered}\n\n\\int \\frac{\\mathrm{d} \\mu}{\\mu}=\\int-\\frac{1}{N}\\left(\\frac{\\partial N}{\\partial y}-\\frac{\\partial M}{\\partial x}\\right) \\mathrm{d} y=\\int-\\frac{2}{y} \\mathrm{~d} y=-2 \\ln (y) \\\\\n\n\\ln (\\mu)=-2 \\ln (y) \\Rightarrow \\mu=\\frac{1}{y^{2}}\n\n\\end{gathered}"
Multiply the differential equation by "\\frac{1}{y^{2}}"
"\\left(\\frac{2}{y}-\\frac{2 x^{2}}{y^{2}}\\right) \\mathrm{d} y+\\left(\\frac{4 x}{y}+1\\right) \\mathrm{d} x=0, \\quad" lost when dividing solution: "\\frac{1}{y^{2}} \\rightarrow y=0"
Equation in total differentials "M(x, y) \\mathrm{d} y+N(x, y) \\mathrm{d} x=0"
where "M(x, y)=\\frac{2}{y}-\\frac{2 x^{2}}{y^{2}}\\ and\\ N(x, y)=\\frac{4 x}{y}+1"
Check for full differential: "M(x, y)_{x}^{\\prime}=N(x, y)_{y}^{\\prime}=-\\frac{4 x}{y^{2}}"
Find "F(x, y): \\mathrm{d} F(x, y)={F}_{y}^{\\prime} \\mathrm{d} y+F_{x}^{\\prime} \\mathrm{d} x"
"\\begin{gathered}\n\nF(x, y)=\\int N(x, y) \\mathrm{d} x=\\int_{y}^{\\prime} \\frac{4 x}{y}+1 \\mathrm{~d} x=\\frac{2 x^{2}}{y}+x+C_{y} \\\\\n\n\\left(\\frac{2 x^{2}}{y}+x\\right)_{y }^{\\prime}=-\\frac{2 x^{2}}{y^{2}} \\\\\n\nC_{y}=\\int M(x, y)-\\left(\\frac{2 x^{2}}{y}+x\\right)_{y}^{\\prime} \\mathrm{d} y=\\int \\frac{2}{y} \\mathrm{~d} y=2 \\ln (y) \\\\\n\nF(x, y)=\\frac{2 x^{2}}{y}+x+C_{y}=2 \\ln (y)+\\frac{2 x^{2}}{y}+x\n\n\\end{gathered}"
Thus, the solution is "2 \\ln (y)+\\frac{2 x^{2}}{y}+x=C"
Comments
Leave a comment