The corresponding homogeneous differential equation is
"y''+y=0"Characteristic (auxiliary) equation
"r^2+1=0""r=\\pm i"The general solution of the homogeneous differential equation is
"y_h=c_1 \\cos x+c_2\\sin x""y'=c_1 '\\cos x-c_1 \\sin x+c_2'\\sin x+c_2\\cos x"If
"c_1 '\\cos x+c_2'\\sin x=0,"then
"y''=-c_1'\\sin x-c_1\\cos x+c_2'\\cos x-c_2\\sin x"Substitute
"-c_1'\\sin x-c_1\\cos x+c_2'\\cos x-c_2\\sin x""+c_1 \\cos x+c_2\\sin x=\\dfrac{1}{\\cos x}"We have
"c_1 '\\cos x+c_2'\\sin x=0,""-c_1'\\sin x+c_2'\\cos x=\\dfrac{1}{\\cos x}"
"c_1'=-\\dfrac{\\sin x}{\\cos x}c_2'""\\dfrac{\\sin^2 x}{\\cos x}c_2'+c_2'\\cos x=\\dfrac{1}{\\cos x}"
"c_1'=-\\dfrac{\\sin x}{\\cos x}""c_2'=1"Integrate
"c_1=-\\int \\dfrac{\\sin x}{\\cos x}dx=\\ln (|\\cos x|)+C_1""c_2=\\int dx=x+C_2"The general solution of the non-homogeneous differential equation is
"y_h=\\ln (|\\cos x|) \\cos x+x\\sin x+C_1\\cos x+C_2\\sin x"
Comments
Leave a comment