Solve the Bernoulli Equation "xyy'+y^2=2x"
Given:
"xyy'+y^2=2x"
We use the substitution
"v=y^2"Then
"v'=2yy'"We get the next DE
"\\frac{x}{2}v'+v=2x""v'+\\frac{2}{x}v=4"
"\\mu(x)=e^{\\int \\frac{2}{x}dx}=e^{2 \\ln x}=x^2"
"x^2v'+2xv=4x^2"
"(x^2v)'=4x^2"
"x^2v=(4\/3)x^3+C"
"v=(4\/3)x+C\/x^2"
"y=\\pm\\sqrt{(4\/3)x+C\/x^2}"
Comments
Leave a comment