Solve the following initial value problems using method of undetermined coefficients: (ii) y''+y' = 5xsinx, y(0) = 0,y(0) = 1.
"y''+y'=5xsinx\\\\\ny(0)=0, y'(0)=1\\\\\ny=y_1+y_2\\\\\n1) y''+y'=0\\\\\n\\lambda^2+\\lambda=0\\\\\n\\lambda(\\lambda+1)=0\\\\\n\\lambda_1=0, \\lambda_2=-1\\\\\ny_1=C_1+C_2e^{-x}"
"2) y_2=(ax+b)cosx+(kx+p)sinx\\\\\ny_2'=acosx-(ax+b)sinx+\\\\+ksinx+(kx+p)cosx=\\\\\n=(kx+p+a)cosx+(-ax-b+k)sinx\\\\\ny_2''=kcosx-(kx+p+a)sinx-\\\\-asinx+(-ax-b+k)cosx=\\\\\n=(-ax-b+2k)cosx+(-kx-p-2a)sinx"
"(-ax-b+2k)cosx+(-kx-p-2a)sinx+\\\\\n+(kx+p+a)cosx+(-ax-b+k)sinx=\\\\=5xsinx"
"xcosx: -a+k=0\\\\\ncosx: -b+2k+p+a=0\\\\\nxsinx:-k-a=5\\\\\nsinx:-p-2a-b+k=0"
"a=-\\frac{5}{2}, k=-\\frac{5}{2}, b=\\frac{5}{2}, p=5\\\\\ny_2=(-\\frac{5}{2}x+\\frac{5}{2})cosx+(-\\frac{5}{2}x+5)sinx"
"y=C_1+C_2e^{-x}+\\\\+(-\\frac{5}{2}x+\\frac{5}{2})cosx+(-\\frac{5}{2}x+5)sinx\\\\\ny'=-C_2e^{-x}-(-\\frac{5}{2}x+\\frac{5}{2})sinx-\\\\\n-\\frac{5}{2}cosx+(-\\frac{5}{2}x+5)cosx-\\frac{5}{2}sinx\\\\\ny(0)=0\\\\\nC_1+C_2+\\frac{5}{2}=0\\\\\ny'(0)=1\\\\\n-C_2-\\frac{5}{2}+5=1\\\\\nC_2=\\frac{3}{2}, C_1=-4"
"y=-4+\\frac{3}{2}e^{-x}+\\\\+(-\\frac{5}{2}x+\\frac{5}{2})cosx+(-\\frac{5}{2}x+5)sinx"
Comments
Leave a comment