Find the general solution of the following differential equations using method of undetermined coefficients: (iii) y''+ 4y' = sin5x+x−1,
"y''+4y'=\\sin 5x+x-1\\\\\ny=y_1+y_2\\\\\n1) y''+4y'=0\\\\\n\\lambda^2+4\\lambda=0\\\\\n\\lambda_1=0, \\lambda_2=-4\\\\\ny_1=c_1+c_2 e^{-4x}\\\\\n2) y_2=a \\cos 5x+ b \\sin5x +x(kx+p)\\\\\ny'_2 =-5a \\sin5x +5b \\cos5x +2kx+p\\\\\ny_2''=-25a \\cos5x-25 b\\sin5x+2k\\\\\n-25a \\cos5x-25 b\\sin5x+2k -20a \\sin5x +\\\\\n+20b \\cos5x +8kx+4p=\\sin 5x+x-1\\\\\n\\cos5x: -25a+20b=0\\\\\n\\sin5x: -25b-20a=1\\\\\nx: 8k=1\\\\\nx^0: 2k+4p=-1\\\\\na=-\\frac{4}{205}\\\\\nb=-\\frac{1}{41}\\\\\nk=\\frac{1}{8}\\\\\np=-\\frac{5}{16}\\\\\ny_2=-\\frac{4}{205} \\cos 5x-\\frac{1}{41} \\sin5x +x(\\frac{1}{8}x-\\frac{5}{16})\\\\\ny=c_1+c_2 e^{-4x}-\\\\\n-\\frac{4}{205} \\cos 5x-\\frac{1}{41} \\sin5x +x(\\frac{1}{8}x-\\frac{5}{16})"
Comments
Leave a comment