Solve y^1=(2x+2y+3)/(2x+2y-1)
"y'=\\frac{2x+2y+3}{2x+2y-1}\\\\\ny'=\\frac{2x+2y-1+4}{2x+2y-1}\\\\\ny'=1+\\frac{4}{2x+2y-1}\\\\\n2x+2y-1=z(x)\\\\\ny=\\frac{1}{2}(z-2x+1)\\\\\ny'=\\frac{1}{2}(z'-2)\\\\\n\\frac{1}{2}(z'-2)=1+\\frac{4}{z}\\\\\n\\frac{1}{2}z'=\\frac{2z+4}{z}\\\\\n\\frac{zdz}{z+2}=4dx\\\\\n\\int{\\frac{zdz}{z+2}}=\\int4dx\\\\\n\\frac{z+2-2dz}{z+2}=\\int4dx\\\\\n\\int(1-\\frac{2}{z+2})dz=4x+C\\\\\nz-2ln|z+2|=4x+C\\\\\n2x+2y-1-2ln|2x+2y+1|=4x+C\\\\\n-2x+2y-1-2ln|2x+2y+1|=C"
Comments
Leave a comment