An inductance of L Henrys and a resistance of 10 ohms are connected in series with e.m.f. of 100 volts. If the current is initially zero, and is equal to 9 amperes after 1 second , find L and find the current after 0.5 second
The instantenous emf equation is given as;
"L\\frac{di}{dt}+Ri=V"
"\\frac{di}{dt}=\\frac{V-Ri}{L}"
"\\frac{di}{dt}=\\frac{R}{L}(\\frac{V}{R}-i)"
"\\frac{di}{(\\frac{V}{R}-i)}=\\frac{R}{L}dt"
Integrating on both sides
"\\int_0^i \\frac{di}{(\\frac{V}{R}-i)}=\\int_0^t \\frac{R}{L}dt"
"\\int_0^i \\frac{di}{(\\frac{i-V}{R})}=-\\frac{R}{L}\\int_0^tdt"
"ln\\frac{(i-\\frac{V}{R})}{-\\frac{V}{R}}=-\\frac{R}{L}t"
"\\frac{(i-\\frac{V}{R})}{-\\frac{V}{R}}=e^{-\\frac{R}{L}t}"
"i={\\frac{V}{R}}(1-e^{-\\frac{R}{L}t})"
When t=1, i(1)=9
"9={\\frac{100}{10}}(1-e^{-\\frac{10}{L}1})"
"\\frac{9}{10}=1-e^{\\frac{-10}{L}}"
"e^\\frac{-10}{L}=0.1"
"\\frac{-10}{L}=ln(0.1)"
ln(0.1)=-2.302
"L=\\frac{10}{2.302}"
L=4.443H
Current after 0.5s is;
"i(0.5)={\\frac{100}{10}}(1-e^{-\\frac{10}{4.344}*0.5})"
=6.837A
Comments
Leave a comment