Find the equation of the solution to dy/dx = x^(5) * y through the point (x;y)=(1;2)
"\\frac{dy}{dx}=x\u2075y," "(x,y)=(1,2)"
"\\frac{dy}{y}=x\u2075dx"
Integrating both sides, we have;
"lny=\\frac{x\u2076}{6}+c"
Recall that y(1)=2
"ln2=\\frac{1}{6}+c"
"c=ln2-\\frac{1}{6}"
"c=0.53"
"lny=\\frac{x\u2076}{6}+0.53"
"=>y=e^{\\frac{x\u2076}{6}+0.53}"
"=>y=e^{\\frac{x\u2076}{6}}e^{0.53}"
"=>y=1.70e^{\\frac{x\u2076}{6}}"
Comments
Leave a comment