1.Solve the differential equation (2π·2 + 5π· + 2)π¦ = π-1/ 2 x
2. Solve the differential equation (π·3 β 3π·2 + 4π· β 2)π¦ = πππ π.
1. The auxiliary equation is, "2m^2 + 5m+2=0".
Solving the equation we get, "m = -\\frac{1}{2}, -2"
The complementary function is "\\text{C.F} = c_1 e^{-\\frac{x}{2}} + c_2 e^{-2x}"
"\\begin{aligned}\n\\text{Particular Integral} &= \\frac{1}{2D^2+5D+2}e^{-\\frac{x}{2}}\\\\\n&= \\frac{1}{2(-\\frac{1}{2})^2+5(-\\frac{1}{2})+2}e^{-\\frac{x}{2}}~~(\\text{Replace D by }-\\frac{1}{2})\\\\\n&=x \\frac{1}{4D+5}e^{-\\frac{x}{2}}~~~ (\\text{Rule failed in the above step})\\\\\n&=\\frac{x e^{-\\frac{x}{2}}}{3}~~(\\text{Replace D by }-\\frac{1}{2})\\\\\n\\end{aligned}"
The general solution is "y = c_1 e^{-\\frac{x}{2}} + c_{2}e^{-2x} + \\dfrac{xe^{-\\frac{x}{2}}}{3}"
b. The auxiliary equation is, "m^3-3m^2+4m-2=0." Using synthetic division,
"\\begin{array}{c|ccc}\n1&1 &-3 & 4 & -2\\\\\n& 0 & ~~1 & -2 & ~~~2\\\\\n\\hline\n&1 & ~-2 & ~~2 & \\mid~0\\\\\n\\hline\n\\end{array}"
"\\therefore m^3-3m^2+4m-2 = (m-1)(m^2-2m+2) = 0 \\implies m = 1, \\\\ m^2-2m+2 =0.\\\\"
Solving the quadratic,
"m = \\dfrac{2\\pm\\sqrt{2^2-4\\times1\\times2}}{2} = \\dfrac{2\\pm2i}{2} = 1\\pm i" .
Hence the complementary function is,
"\\text{C.F} = c_1e^{x} + e^{x}(c_2 \\cos x + c_3 \\sin x)"
"\\begin{aligned}\n\\text{Particular Integral} &= \\frac{1}{D^3 - 3D^2+4D-2}\\cos x \\\\\n&= \\frac{1}{-D + 3 + 4D - 2}\\cos x ~~(\\text{Replacing $D^2$ by $-1$})\\\\\n&= \\frac{1}{1 + 3D}\\cos x\\\\\n&= \\frac{1-3D}{1 - 9D^{2}}\\cos x~~~~~~~~~~~(\\text{Multiplying the conjugate})\\\\\n&= \\frac{\\cos x - 3D(\\cos x)}{10}~~~~~(\\text{Replacing $D^2$ by $-1$})\\\\\n&=\\frac{\\cos x + 3\\sin x}{10}\\\\\n\\end{aligned}"
The general solution is,
"y = e^x(c_1 + c_{2} \\cos x + c_3 \\sin x) + \\dfrac{\\cos x + 3\\sin x}{10}"
Comments
Leave a comment