Determine the unique solution of the following differential equations by using Laplace transforms:
a. y"(t) - 6y'(t) + 9y(t) = t2e3t if y'(0) = 6 and y(0) = 2
b. y"(t) - 2y'(t) + 3y(t) = e-3t if y'(0) = 0 and y(0) = 0
"a) y''(t)-6y'(t)+9y(t)=t^2e^{3t}\\\\\ny'(0)=6, y(0)=2.\\\\\nL\\{y''(t)-6y'(t)+9y(t)\\}=L\\{t^2e^{3t}\\}\\\\\nL\\{y''(t)\\}-6L\\{y'(t)\\}+9L\\{y(t)\\}=L\\{t^2e^{3t}\\}\\\\\np^2 Y(p)-py(0)-y'(0)-6(pY(p)-y(0))+\\\\\n+9 Y(p)=\\frac{2}{(p-3)^3}\\\\\nY(p)(p^2-6p+9)-2p-6+12=\\frac{2}{(p-3)^3}\\\\\nY(p)(p-3)^2-2(p-3)=\\frac{2}{(p-3)^3}\\\\\nY(p)(p-3)^2=\\frac{2}{(p-3)^3}+2(p-3)\\\\\nY(p)=\\frac{2}{(p-3)^5}+\\frac{2}{p-3}\\\\\nL^{-1}\\{Y(p)\\}=L^{-1}\\{\\frac{2}{(p-3)^5}\\}+L^{-1}\\{\\frac{2}{p-3}\\}\\\\\ny(t)=\\frac{2}{4!}t^4e^{3t}+2e^{3t}\\\\\ny(t)=\\frac{1}{12}t^4e^{3t}+2e^{3t}\\\\\nb) y''(t)-2y'(t)+3y(t)=e^{-3t}\\\\\ny'(0)=0, y(0)=0.\\\\\nL\\{y''(t)-2y'(t)+3y(t)\\}=L\\{e^{-3t}\\}\\\\\nL\\{y''(t)\\}-2L\\{y'(t)\\}+3L\\{y(t)\\}=L\\{e^{-3t}\\}\\\\\np^2Y(p)-py(0)-y'(0)-2(pY(p)-y(0))+\\\\\n+3Y(p)=\\frac{1}{p+3}\\\\\nY(p)(p^2-2p+3)=\\frac{1}{p+3}\\\\\nY(p)=\\frac{1}{(p+3)(p^2-2p+3)}\\\\\nY(p)=\\frac{1}{18}\\frac{1}{p+3}-\\frac{1}{18}\\frac{p-5}{p^2-2p+3}\\\\\nY(p)=\\frac{1}{18}\\frac{1}{p+3}-\\frac{1}{18}\\frac{p-5}{(p-1)^2+2}\\\\\nY(p)=\\frac{1}{18}\\frac{1}{p+3}-\\frac{1}{18}\\frac{p-1-4}{(p-1)^2+2}\\\\\nY(p)=\\frac{1}{18}\\frac{1}{p+3}-\\frac{1}{18}\\frac{p-1}{(p-1)^2+2}+\\frac{2}{9}\\frac{1}{(p-1)^2+2}\\\\\nL^{-1}\\{Y(p)\\}=L^{-1}\\{\\frac{1}{18}\\frac{1}{p+3}\\}-\\\\\n-L^{-1}\\{\\frac{1}{18}\\frac{p-1}{(p-1)^2+2}\\}+L^{-1}\\{\\frac{2}{9}\\frac{1}{(p-1)^2+2}\\}\\\\\ny(t)=\\frac{1}{18}e^{-3t}-\\frac{1}{18}e^t\\cos \\sqrt{2}t +\\frac{2}{9} \\frac{1}{\\sqrt{2}}e^t \\sin \\sqrt{2}t\\\\\ny(t)=\\frac{1}{18}e^{-3t}-\\frac{1}{18}e^t\\cos \\sqrt{2}t +\\frac{\\sqrt{2}}{9} e^t \\sin \\sqrt{2}t\\\\"
Comments
Leave a comment