8. Solve x
x^2y′′− 2xy′+ 2y = x^4sin(4 log x)
"x=e^u"
"a_0\\lambda(\\lambda-1)(\\lambda-2)...(\\lambda-n+1)...a_{n-2}\\lambda(\\lambda-1)+a_{n-1}\\lambda+a_n=0"
"(\\lambda-1)\\lambda-2\\lambda+2=0"
"\\lambda^2-3\\lambda+2=0"
"\\lambda_1=2"
"\\lambda_2=1"
"y=Ce^u+C_1e^{2u}"
"y_i=u^se^{au}(R_m(u)cos(bu)+T_m(u)sin(bu))"
s=0 if a+bi is not a root or s=k if it is.
a+bi=4i+4 s=0
"y_0=e^{4u}(Bsin(4u)+Acos(4u))"
"y'_0(u)=(4B-4A)e^{4u}sin(4u)+(4B+4A)e^{4u}cos(4u)"
"y''_0=32Be^{4u}cos(4u)-32Ae^{4u}sin(4u)"
"(-10B-20A)e^{4u}sin(4u)+(20B-10A)e^{4u}cos(4u)=e^{4u}sin(4u)"
"A=\\frac{-1}{25}"
"B=\\frac{-1}{50}"
"y_0=e^{4u}(\\frac{-sin(4u)}{50}-\\frac{cos(4u)}{25})"
"y=e^{4u}(\\frac{-sin(4u)}{50}-\\frac{cos(4u)}{25})+Ce^u+C_1e^{2u}"
Comments
Leave a comment