Given that y_1 = e^{x}
y1 =e^x
is a solution of xy’’+(1-2x)y’+(x-1)y=0
xy’’+(1−2x)y’+(x−1)y=0, find its second solution y_2
y2
(0,∞), which is linearly independent from y1
"y_1=e^x\\\\y=y_1\\int{u\\left( x \\right) dx}=e^x\\int{u\\left( x \\right) dx}\\\\y'=e^x\\int{u\\left( x \\right) dx}+e^xu\\left( x \\right) \\\\y''=e^x\\int{u\\left( x \\right) dx}+2e^xu\\left( x \\right) +e^xu'\\left( x \\right) \\\\x\\left( e^x\\int{u\\left( x \\right) dx}+2e^xu\\left( x \\right) +e^xu'\\left( x \\right) \\right) +\\left( 1-2x \\right) \\left( e^x\\int{u\\left( x \\right) dx}+e^xu\\left( x \\right) \\right) +\\left( x-1 \\right) e^x\\int{u\\left( x \\right) dx}=0\\\\xu'\\left( x \\right) +u\\left( x \\right) =0\\\\\\frac{du}{u}=-\\frac{dx}{x}\\Rightarrow u=\\frac{C}{x}\\Rightarrow y_2=e^x\\int{\\frac{1}{x}dx}=e^x\\ln x\\\\"
Comments
Leave a comment