From definition we have ||T(x)||"\\le||T||\\cdot ||x||" for any x"\\in X"
Let a be eigenvalue of T, then "\\exist x\\in X,||x||\\ne0" such that "T(x)=a\\cdot x"
Therefore ||T(x)||=||a"\\cdot" x||=|a|"\\cdot" ||x||"\\le ||T||\\cdot| |x||"
Dividing both parts on value ||x||>0 we will have:
|a|"\\le" ||T||, proof is done.
Statement |a|<||T|| is not true in the general case because if "X_0" ={"\\lambda\\cdot x,\\lambda \\in R" }, "T_{X0}(y)=a\\cdot y,y\\in X_0" we have ||T||=|a|.
Comments
Leave a comment