Show that the space R[a,b] of all Riemann integrable functions on the interval [a,b] is a linear space over a vector field R
"\\int((f+g)(x))dx=\\int f(x)dx+\\int g(x)dx"
"\\int(af(x))dx=a\\int f(x)dx"
So, space R[a,b] of all Riemann integrable functions is a linear space.
Comments
Leave a comment