"T\\in S(given)"
To prove-for all "\\psi\\in S,F(T*\\psi)=(2\u03c0)^{n\/2}.F(\\psi).F(T)"
"F(T(t))= fourier" transform of T(t)
"(T*\\psi)(t)=\\int_{-\\infty} ^{\\infty}T(x)\\psi(t-x)dx"
"F(T(t))=(2\u03c0)^{-1\/2}(\\int_{-\\infty}^{\\infty}T(t)exp(-iwt)dt"
"F((T*\\psi)(t))=(2\u03c0)^{-1\/2}(\\int_{-\\infty}^{\\infty} \n (T*\\psi)(t) exp(-iwt)dt"
"F((T*\\psi)(t))=(2\u03c0)^{-1\/2}(\\int_{-\\infty}^{\\infty} (\\int_{-\\infty} ^{\\infty}T(x)\\psi(t-x)exp(-iwt)dx)dt"
We can change the order of the equation and separate T(x) as it will be a constant when integrated with respect to t.
"F((T*\\psi)(t))=(\\int_{-\\infty}^{\\infty} T(x) (2\u03c0)^{-1\/2} (\\int_{-\\infty} ^{\\infty}\\psi(t-x)exp(-iwt)dt)dx"
"(2\u03c0)^{-1\/2} (\\int_{-\\infty} ^{\\infty}\\psi(t-x)exp(-iwt)dt)=F(\\psi(t-x))"
"F((T*\\psi)(t))=(\\int_{-\\infty}^{\\infty} T(x) F(\\psi(t-x))dx" ----(i)
By properties of Fourier Transform,
"F(\\psi(t-x))=exp(-iwt)F(\\psi(x))"
Using this in equation (i)
"F((T*\\psi)(t))=\\int_{-\\infty}^{\\infty} T(x) exp(-iwt)F(\\psi(t)dx"
"F((T*\\psi)(t))=(2\u03c0) ^{1\/2}F(\\psi(t).(2\u03c0)^{-1\/2 }. \\int_{-\\infty}^{\\infty} T(x) exp(-iwt)dx"
"F((T*\\psi)(t))=(2\u03c0) ^{1\/2}F(\\psi(t).F(T(t))"
So,
"F(T*\\psi)=(2\u03c0)^{n\/2}.F(\\psi).F(T)" where "n=1"
(Proved)
Comments
Leave a comment