Let a, b, c, d be a set of real numbers, show that a²+b²+c²+d²=1
If the matrix
a²-1 ab ac ad
ba b²-1 bc bc
ca cb c²-1 cd
da db dc d²-1
equal to zero.
"\\begin{vmatrix}\n\na\u00b2-1 &ab &ac &ad\\\\\nba &b\u00b2-1 &bc &bd\\\\\nca &cb &c\u00b2-1 &cd\\\\\nda &db &dc &d\u00b2-1\\\\\n\n\\end{vmatrix}=\n(a^2-1)\\begin{vmatrix}\nb^2-1&bc&bd\\\\cb&c^2-1&cd\\\\db&dc&d^2-1\n\\end{vmatrix}\n-ab\n\\begin{vmatrix}\nba&bc&bd\\\\ca&c^2-1&cd\\\\da& dc&d^2-1\n\\end{vmatrix}+ac \\begin{vmatrix}\nba&b^2-1&bd\\\\ca&cb &cd\\\\da& db&d^2-1\n\\end{vmatrix}-ad \\begin{vmatrix}\nba&b^2-1&bc\\\\ca&cb&c^2-1\\\\da& db&dc\n\\end{vmatrix}="
"=(a^2-1)\\bigg[(b^2-1)\\big((c^2-1)(d^2-1)-c^2d^2\\big)-bc\\big(cb(d^2-1)-cbd^2\\big)+bd\\big(c^2bd-bd(c^2-1)\\big)\\bigg]-ab\\bigg[ba\\big((c^2-1)(d^2-1)-c^2d^2\\big)-bc\\big(ca(d^2-1)-acd^2\\big)+bd\\big(ac^2d-ad(c^2-1)\\big)\\bigg]+ac\\bigg[ba\\big(cb(d^2-1)-bcd^2\\big)-(b^2-1)\\big(ac(d^2-1)-acd^2\\big)+bd(abcd-abcd)\\bigg]-ad\\bigg[ba\\big(bc^2d-bd(c^2-1)\\big)-ac\\big(dc(b^2-1)-b^2cd\\big)+ad\\big((b^2-1)(c^2-1)-b^2c^2\\big)\\bigg]="
"=(a^2-1)\\bigg[-1+b^2+c^2+d^2\\bigg]-a^2b^2-a^2c^2-a^2d^2="
"=1-a^2-b^2-c^2-d^2=0"
So, "a^2+b^2+c^2+d^2=1" .
Comments
Leave a comment