Let a, b, c, d be a set of real numbers, show that a²+b²+c²+d²=1
If the matrix of
a²-1 ab ac ad
ba b²-1 bc bc
ca cb c²-1 cd
da db dc d²-1
equal to zero.
"\\begin{vmatrix}\n (a^2-1) & ab & ac & ad\\\\\n ba & (b^2-1) & bc & bd\\\\\nca & cb & (c^2-1) & cd\\\\\nad & db & dc & (d^2-1)\n\\end{vmatrix}=0" using Laplace method to find the determinant
"\\begin{vmatrix}\n a^2-1 & ab \\\\\n ba & b^2-1\n\\end{vmatrix}\\begin{vmatrix}\n c^2-1 & cd \\\\\n dc & d^2-1\n\\end{vmatrix}-\\\\\n\\\\\n\\begin{vmatrix}\n a^2-1 & ac \\\\\n ba & bc\n\\end{vmatrix}\\begin{vmatrix}\n cb & cd \\\\\n bd & d^2-1\n\\end{vmatrix}+\\\\\n\\begin{vmatrix}\n a^2-1 & ad \\\\\n ba & bd\n\\end{vmatrix}\\begin{vmatrix}\n cb & c^2-1 \\\\\n db & dc\n\\end{vmatrix}+\\\\\n\\begin{vmatrix}\n ab & ac \\\\\n b^2-1 & bc\n\\end{vmatrix}\\begin{vmatrix}\n ca & cd \\\\\n da & d^2-1\n\\end{vmatrix}-\\\\\n\\begin{vmatrix}\n ab & ad \\\\\n b^2-1 & bd\n\\end{vmatrix}\\begin{vmatrix}\n ca & c^2-1\\\\\n da & dc\n\\end{vmatrix}+\\\\\n\\begin{vmatrix}\n ac & ad \\\\\n bc & bd\n\\end{vmatrix}\\begin{vmatrix}\n ca & cb \\\\\n da & db\n\\end{vmatrix}=0\n\\\\\n(1-(a^2+b^2))(1-(c^2+d^2))-(bc)^2-(bd)^2-\\\\(ac)^2-(ad)^2+0=0\\\\\n1-c^2-d^2-a^2-b^2+(cb)^2+(ac)^2+(ad)^2+\\\\(bd)^2-(bc)^2-(bd)^2-(ac)^2-(ad)^2=0\\\\\n\\therefore\\\\\n1=a^2+b^2+c^2+d^2\\\\\na^2+b^2+c^2+d^2=1"
Comments
Leave a comment