suppose u is a subspace of r^4 defined by u=span((1,2,3,-4),(-5,4,3,2)). find an orthonormal basis of u and an orthonormal basis of u^⊥
Notice that (1,2,3-4) and (-5,4,3,2) are linearly independent since neither vetor is a scalar multiple of the other. Thus the basis is
(1,2,3,-4),(-5,4,3,2),(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)
So basis of "\\R^4" is
(1,2,3,-4),(-5,4,3,2),(1,0,0,0),(0,1,0,0)
"e_1=\\frac{(1,2,3,-4)}{\\|(1,2,3,-4)\\|}\\\\\ne_1=(\\frac{1}{\\sqrt{30}},\\sqrt{\\frac{2}{15}},\\sqrt{\\frac{3}{10}},-2\\sqrt{\\frac{2}{15}})\\\\\ne_2=\\frac{(-5,4,3,2)-<(-5,4,3,2),e_1>e_1}{\\|(-5,4,3,2)-<(-5,4,3,2),e_1>e_1\\|}\\\\\ne_2=(-\\frac{77}{\\sqrt{12030}},28\\sqrt{\\frac{2}{6015}},13\\sqrt{\\frac{3}{4010}},19\\sqrt{\\frac{2}{6015}})\\\\\ne_3=\\frac{(1,0,0,0)-<(1,0,0,0),e_1>e_1- <(1,0,0,0),e_2>e_2}{\\|(1,0,0,0)-<(1,0,0,0),e_1>e_1- <(1,0,0,0),e_2>e_2\\|}\\\\\ne_3=(\\sqrt{\\frac{190}{401}},\\frac{117}{\\sqrt{76190}},6\\sqrt{\\frac{10}{7619}},\\frac{151}{\\sqrt{76190}})\\\\\ne_4=\\frac{(0,1,0,0)-<(0,1,0,0),e_1>e_1- <(0,1,0,0),e_2>e_2-<(0,1,0,0),e_3>e_3}{\\|(0,1,0,0)-<(0,1,0,0),e_1>e_1- <(0,1,0,0),e_2>e_2-<(0,1,0,0),e_3>e_3\\|}\\\\\ne_4=(0,\\frac{9}{\\sqrt{190}},-\\sqrt{\\frac{10}{19}},-\\frac{3}{\\sqrt{190}})" Orthogonal basis of u is
"(\\frac{1}{\\sqrt{30}},\\sqrt{\\frac{2}{15}},\\sqrt{\\frac{3}{10}},-2\\sqrt{\\frac{2}{15}})" and "(-\\frac{77}{\\sqrt{12030}},28\\sqrt{\\frac{2}{6015}},13\\sqrt{\\frac{3}{4010}},19\\sqrt{\\frac{2}{6015}})" while the orthogonal basis of "u^\\bot" "(\\sqrt{\\frac{190}{401}},\\frac{117}{\\sqrt{76190}},6\\sqrt{\\frac{10}{7619}},\\frac{151}{\\sqrt{76190}})"
and "(0,\\frac{9}{\\sqrt{190}},-\\sqrt{\\frac{10}{19}},-\\frac{3}{\\sqrt{190}})"
Comments
Leave a comment