Solution.
1)Â "z^4 + 4 = 0"
"z^4 = -4"
"e^{i\\pi} = -1" and let "z = re^{i\\theta}"
 "(re^{i\\theta})^4 = 4e^{i\\pi}"
"r^4 e^{i4\\theta}= 4e^{i\\pi}"
so"r^4 = 4 \\implies r=\\sqrt{2}"
"4\\theta = \\pi + 2n\\pi \\implies \\theta = \\frac{\\pi}{4} + \\frac{2n\\pi}{4}"Â where n=0,1,2,3
So, roots of the equation will be,
"z = \\sqrt{2}e^{i(\\frac{\\pi}{4} )}, \\sqrt{2}e^{i(\\frac{\\pi}{4} + \\frac{\\pi}{2})},\\sqrt{2}e^{i(\\frac{\\pi}{4} + {\\pi})},\\sqrt{2}e^{i(\\frac{\\pi}{4} + \\frac{3\\pi}{2})}"
"z = \\sqrt{2} e^{i(\\frac{\\pi}{4} )},\\sqrt{2}e^{i(\\frac{3\\pi}{4} )},\\sqrt{2}e^{i(\\frac{5\\pi}{4})},\\sqrt{2}e^{i(\\frac{7\\pi}{4} )}"
Since, "e^{i\\theta} = cos\\theta + isin\\theta"
"z_1 =\\sqrt{2} e^{i(\\frac{\\pi}{4} )} = \\sqrt{2}(cos\\frac{\\pi}{4} + isin\\frac{\\pi}{4}) = \\sqrt{2}(\\frac{1}{\\sqrt{2} } +i\\frac{1}{\\sqrt{2}}) = 1+i"
"z_2 =\\sqrt{2} e^{i(\\frac{3\\pi}{4} )} = \\sqrt{2}(cos\\frac{3\\pi}{4} + isin\\frac{3\\pi}{4}) = \\sqrt{2}(-\\frac{1}{\\sqrt{2} } +i\\frac{1}{\\sqrt{2}}) = -1+i"
"z_3 =\\sqrt{2} e^{i(\\frac{5\\pi}{4} )} = \\sqrt{2}(cos\\frac{5\\pi}{4} + isin\\frac{5\\pi}{4}) = \\sqrt{2}(-\\frac{1}{\\sqrt{2} } -i\\frac{1}{\\sqrt{2}}) = -1-i"
"z_4 =\\sqrt{2} e^{i(\\frac{7\\pi}{4} )} = \\sqrt{2}(cos\\frac{7\\pi}{4} + isin\\frac{7\\pi}{4}) = \\sqrt{2}(\\frac{1}{\\sqrt{2} } -i\\frac{1}{\\sqrt{2}}) = 1-i"
 "z^4-4 = 0 \\implies (z^2-2)(z^2+2)=0"
"z^2-2=0 \\implies z = \\pm\\sqrt{2}"
"z^2+2=0 \\implies z^2 = - 2 \\implies z=\\pm\\sqrt{2}i"
"z = \\sqrt{2},-\\sqrt{2},\\sqrt{2}i,-\\sqrt{2}i"
2)Â "z^8 - 16 = 0 \\implies (z^4-4)(z^4+4) = 0"
"z = -\\sqrt{2},\\sqrt{2},-\\sqrt{2}i,\\sqrt{2}i,1+i,-1+i,-1-i,1-i"
 "z^8 + 16 = 0"
"z^8 = -16"
"(re^{i\\theta})^8 = (16e^{i\\pi})"
Solving it, "r = (16)^{1\/8} \\implies r=\\sqrt{2}"
"8\\theta = \\pi + 2n\\pi \\implies \\theta = \\frac{\\pi}{8} + \\frac{2n\\pi}{8 }"Â where =0,1,2,3,4,5,6,7
"z_1 = \\sqrt{2}e^{i\\frac{\\pi}{8}} = \\sqrt{2}(cos\\frac{\\pi}{8}+isin\\frac{\\pi}{8})"
"z_2 = \\sqrt{2}e^{i\\frac{3\\pi}{8}} = \\sqrt{2}(cos\\frac{3\\pi}{8}+isin\\frac{3\\pi}{8})"
"z_3 = \\sqrt{2}e^{i\\frac{5\\pi}{8}} = \\sqrt{2}(cos\\frac{5\\pi}{8}+isin\\frac{5\\pi}{8})"
"z_4= \\sqrt{2}e^{i\\frac{7\\pi}{8}} = \\sqrt{2}(cos\\frac{7\\pi}{8}+isin\\frac{7\\pi}{8})"
"z_5 = \\sqrt{2}e^{i\\frac{9\\pi}{8}} = \\sqrt{2}(cos\\frac{9\\pi}{8}+isin\\frac{9\\pi}{8})"
"z_6 = \\sqrt{2}e^{i\\frac{11\\pi}{8}} = \\sqrt{2}(cos\\frac{11\\pi}{8}+isin\\frac{11\\pi}{8})"
"z_7 = \\sqrt{2}e^{i\\frac{13\\pi}{8}} = \\sqrt{2}(cos\\frac{13\\pi}{8}+isin\\frac{13\\pi}{8})"
"z_8 = \\sqrt{2}e^{i\\frac{15\\pi}{8}} = \\sqrt{2}(cos\\frac{15\\pi}{8}+isin\\frac{15\\pi}{8})"
Answer:
1)"z^4+4=0:"
"z_1 = 1+i";
"z_2 =-1+i";
"z_3 = -1-i";
"z_4 =1-i";
"z^4-4=0:"
"z = \\sqrt{2},-\\sqrt{2},\\sqrt{2}i,-\\sqrt{2}iz= \n2\n\u200b\n ,\u2212 \n2\n\u200b\n , \n2\n\u200b\n i,\u2212 \n2\n\u200b\n i" ;
2)"z^8-16=0:"
"z=\u2212 \n2\n\u200b\n , \n2\n\u200b\n ,\u2212 \n2\n\u200b\n i, \n2\n\u200b\n i,1+i,\u22121+i,\u22121\u2212i,1\u2212i" ;
"z^8+16=0:"
"z_1 = \\sqrt{2}(cos\\frac{\\pi}{8}+isin\\frac{\\pi}{8});"
"z_2 = \\sqrt{2}(cos\\frac{3\\pi}{8}+isin\\frac{3\\pi}{8});"
"z_3 = \\sqrt{2}(cos\\frac{5\\pi}{8}+isin\\frac{5\\pi}{8}) ;"
"z_4= \\sqrt{2}(cos\\frac{7\\pi}{8}+isin\\frac{7\\pi}{8}) ;"
"z_5 = \\sqrt{2}(cos\\frac{9\\pi}{8}+isin\\frac{9\\pi}{8}) ;"
"z_6 = \\sqrt{2}(cos\\frac{11\\pi}{8}+isin\\frac{11\\pi}{8}) ;"
"z_7 = \\sqrt{2}(cos\\frac{13\\pi}{8}+isin\\frac{13\\pi}{8}) ;"
"z_8 = \\sqrt{2}(cos\\frac{15\\pi}{8}+isin\\frac{15\\pi}{8})."
Comments
Leave a comment